
Cosmology 2 TA1: recap of Friedmann equations

Luca Teodori

1 Isotropic and Homogeneous universe
One of the first assumption in cosmology is that the universe is isotropic (i.e. the universe looks the same
in every line of sight) and homogeneous (the properties of the universe do not depend on the particular
point in space we are). Another way of saying, is that the universe is rotation and translation invariant
(but critically, not invariant under time translations, i.e. the universe looks different at different points
in time). How much is this assumption justified? After all, one can just look around to blatantly falsify
this assumption.

But if we look at the very early universe through the CMB, Fig. 1, or we look at very large scales, Fig. 2,
this approximation does not look bad any more. In this course we will deal mostly with early universe
physics, so let’s put our focus on the CMB. In a nutshell, the CMB is the Cosmic Microwave Background
radiation permeating our Universe, whose origin dates back to when the universe was approximately
380000 years old. The spectrum of this radiation is one of the best example of black body radiation
known, and figures like the ones in Fig. 1 represent the temperature of this black body from different
line of sights. These temperature differences are connected with overdensities or underdensities present
at the formation of the CMB, hence making the CMB a snapshot of how the universe looked like back
then.

At first, if one looks at the left panel of Fig. 1, one sees that the CMB spectrum does not look isotropic
at all; there is clearly a dipole present. This dipole contribution is thought to come from the movement
of the Earth, Sun and Milky way with respect to a reference frame where the CMB does indeed look
isotropic. We call this frame the comoving frame, and it is only with respect to this frame that the
universe looks isotropic1. Strictly speaking, humans on Earth are not comoving observer, due to the
peculiar motion of Earth, Sun etc. with respect to the overall expanding universe2.

Once in this comoving frame, one has to look the CMB with instruments capable of 10−5 temperature de-
termination precision to see meaningful deviations from perfect isotropy. These temperature fluctuations
are related to density fluctuations. If we split

ρ(x⃗, t) = ρ̄(t)(1 + δ(x⃗, t)) , (1.1)

where ρ̄ is the average density at comoving time t, also called background density, and δ is the fluctuation
over such a background, then during the CMB formation it is true that δ ≪ 1. What this implies is that
we can describe the early universe as a perturbed homogeneous and isotropic one, where homogeneous
and isotropic is the zeroth order approximation. We will focus on just this zeroth order in the following,
but later in the course we will see how to go beyond this order.

2 The Friedmann equations
Upon an isotropic and homogeneous universe, the most general line element is the Friedmann-Robertson-
Walker (FRW) one, which in comoving coordinates reads

ds2 = gµνdx
µdxν = dt2 − a2(t)

(
dr2

1− κr2
+ r2(dθ2 + sin2 θdφ2)

)
. (2.1)

1What we can determine from our solar system is that the universe looks isotropic, but actually we cannot really say
whether it is also homogeneous. To arrive at such conclusion, one has to invoke the Copernican principle, which states that
it is unlikely that we live in a very special region of the universe. In this context, we can say it is very unlikely we live in
just one of the few regions where the universe looks isotropic. Once we accept this principle, then isotropy from every space
point implies homogeneity.

2Be aware that general relativity does NOT claim that there is no privileged reference frame or choice of coordinates.
The correct claim is that physics is invariant over such a choice, which is a different statement.
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2 THE FRIEDMANN EQUATIONS

Figure 1: On the left, CMB snapshot without the dipole contribution subtracted. On the center, evolution
of the representations of the CMB. On the right, the up-to-date figure from Planck 18.

Figure 2: On the left, galaxies distributed in redshift on the sky, from SDSS. On the right, example of
the cosmic web, from millennium simulation. On large scales, the universe looks indeed homogeneous
and isotropic.
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2 THE FRIEDMANN EQUATIONS

κ is the curvature parameter; homogeneity and isotropy in space implies that the spatial Ricci curvature
should be a constant, (3)R ∝ κ; we have a flat, spherical/closed or hyperbolic/open universe for κ = 0,
κ > 0 or κ < 0 respectively. Our universe seems best described as a flat one, κ ≃ 0.

We have the freedom to set the scale factor at the present time as a(t0) = 1, thanks to the invariance
under the rescaling

a → λa , r → r/λ , κ → λ2κ . (2.2)

Notice that the sign of κ remains unchanged. Be aware that in cosmology, it is customary to label with a
zero subscript quantities which refer to the present time, rather than some initial time. With this choice,
comoving distances x correspond to physical distance today, since

xphys = a(t)x . (2.3)

We determined the metric, which enters the LHS of Einstein equations (in natural units)

Rµν − 1

2
gµνR = 8πGTµν + Λgµν ; (2.4)

the proper stress-energy tensor obeying homogeneity and isotropy is the perfect fluid one, which in
covariant formulation is

Tµν = −P̄ (t)gµν + (P̄ (t) + ρ̄(t))uµuν , (2.5)

where uµ is the four velocity of the observer. A comoving observer has uµ = (1, 0, 0, 0). It is important
to remark that ρ̄, P̄ depend on the time t alone (no space dependence).

From this, we obtain the Friedmann equations:(
ȧ

a

)2

=: H2 =
8πG

3
ρ̄− κ

a2
+

Λ

3
, (2.6)

ä

a
= −4πG

3
(ρ̄+ 3P̄ ) +

Λ

3
; (2.7)

the third Friedmann equation, also called continuity equation, can be derived from the previous two or
also from the zero component of the continuity equation Tµν

;ν = 0, and reads

˙̄ρ+ 3H(ρ̄+ P̄ ) = 0 . (2.8)

Notice that κ appears in equations always in the combination κ/a2, which is invariant under the rescaling
Eq. (2.2).

Different components of the universe are characterized by a different equation of state P̄ = wsρ̄, in
particular ws = 0 for matter (non-relativistic matter has negligible pressure with respect to energy
density) and ws = 1/3 for radiation (the usual result for an ultra-relativistic gas).

It is worth stopping for a second to consider the case ws = −1, a negative pressure fluid. If we split the
density in possible different components

ρ = ρΛ +
∑
i

ρi , (2.9)

where ρΛ is the component with equation of state ws = −1 and ρi with wi
s ̸= −1, we have, from Eq. (2.5)

Tµν = ρΛgµν +
∑
i

T (i)
µν . (2.10)

We see that the ρΛ component is degenerate with the cosmological constant term Λ in the Einstein
equation. This means that we can define an effective cosmological constant

Λeff = Λ+ 8πGρΛ . (2.11)

Notice that, from Eq. (2.8), ˙̄ρ = 0, hence constant. From a physical point of view, Λ is a parameter
entering the GR equations, it can be interpreted as a parameter which defines the geometrical property
of the space-time we live in. ρΛ, on the other hand, comes from the energy-density budget of the universe,
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3 DISTANCES AND HORIZONS

in particular its origin can come from vacuum expectation values of standard model (or beyond standard
model) fields. In the following, we will not make such a distinction and we will drop the eff superscript.

Using the equations of states for the various density components of the universe, we can express the first
Friedmann equation in terms of the various density parameters today

Ωj,0 :=
8πG

3H2
0

ρ̄j,0 , (2.12)

where again we used 0 as a subscript for quantities evaluated at the present time, and the index j labels
the various components (r = radiation, m=matter, Λ = dark energy, ρ̄Λ,0 = Λ/8πG). Notice that, if the
total density of the universe is exactly

ρc :=
3H2

0

8πG
, (2.13)

where ρc is called critical density, it would imply a flat universe, κ = 0. Using the third Friedmann
equations implementing the equation of state, we have

ρ̄(t) = ρ̄(t0)

(
a(t)

a(t0)

)−3(1+ws)

. (2.14)

With this, the first Friedmann equation becomes

H2 = H2
0

(
Ωr,0

(
a

a(t0)

)−4

+Ωm,0

(
a

a(t0)

)−3

+Ωκ,0a
−2 +ΩΛ,0

)
, (2.15)

where Ωκ,0/a
2 = −κ/(H2

0a
2) parametrizes how far are we from a flat universe case. Our universe so far

seems compatible with Ωr,0 ≤ 10−5, Ωκ,0 ∼ 0, Ωm,0 ∼ 0.3, ΩΛ,0 ∼ 0.7.

3 Distances and horizons
In this section, it will prove to be useful to write the metric using the conformal time dη = dt /a(t)
instead of the comoving time, and the comoving coordinate w; defining

fκ(w) =


1√
κ
sin
(√

κw
)
, κ > 0 ;

w , κ = 0 ;
1√
−κ

sinh
(√

−κw
)
, κ < 0 ;

(3.1)

we end up (with dΩ2 = dθ2 + sin2 θdφ2)

ds2 = a2(η)
(
dη2 − dw2 + f2

κ(w)dΩ
2
)
. (3.2)

In this form, for the case κ = 0, the metric is just conformally equivalent to Minkowski, hence giving the
name conformal time to η.

Preliminary: geodesics in FRW. We want first to find the geodesics for a FRW universe. One can
easily find the geodesic equations for a generic metric by building the Lagrangian associated,

L(xµ, dxµ/dλ ) = gµν
dxµ

dλ

dxν

dλ
=

{
0 for massless particles ,

> 0 for massive particles .
(3.3)

We can use the choice of the geodesic parameter λ to normalize gµνu
µuν = 1, uµ = dxµ/dλ ,3 for massive

particles, whereas for massless particles we can set uµ = Pµ4, where Pµ is the four-momentum (for
massive particles, Pµ = muµ). The geodesic equations then read from Euler-Lagrange equations

d

dλ

∂L
∂ dxµ

dλ

=
∂L
∂xµ

. (3.4)

3With this choice, λ is the proper time of a particle following the geodesic. For a massless particle, the proper time is
always zero, so one cannot use proper time to represent massless particle geodesics.

4Notice that this loosely mean that we are using λ ∼ limm→0 τ/m, where τ is proper time.

4



3 DISTANCES AND HORIZONS

Considering geodesics with constant θ, φ, we can focus on only

d

dλ

(
a2

dw

dλ

)
= 0 =⇒ dw

dλ
=

C

a2
;
dη

dλ
= ±dw

dλ
, (3.5)

where the last comes directly from Eq. (3.3), with dθ/dλ = dφ/dλ = 0. Covariant notions of energy
E and three-momentum p associated to a particle geodesic characterized by the four-momentum Pµ as
seen by an observer with four-velocity vµ are5

E = vµP
µ , p2 = PµPµ − (PµVµ)

2 ; (3.7)

for a massless particle, E = p. A comoving (massive) observer (in coordinates from Eq. (3.2)) has
vµ = (1/a, 0, 0, 0), so

E ∝ 1

a
, p ∝ 1

a
, (3.8)

implying that massless particles energy scales as 1/a, hence explaining the a−4 behaviour of radiation
density. This does not hold for massive particles (exercise).

Exploiting the metric, we can derive the expression for the comoving metric distance (which corresponds
to the comoving distance for κ = 0) as

η = w =

∫ t

0

dt

a
=

∫ z

0

dz

H(z)
, (3.9)

where we defined the cosmological redshift

1 + z :=
1

a
. (3.10)

Redshift is really the red-shift of the waveform of a pulse of light, when emitted from a source at time
t < t0 and reaches the observer at time t0. From Eq. (3.8), using p ∝ λ,

λo − λe

λe
=

1

a(te)
− 1 = z . (3.11)

Using equation (2.15), we have

w(z) =
1

H0Ω
1/2
Λ,0

∫ z

0

(
Ωm,0

ΩΛ,0
(1 + z′)3 + 1 +

Ωκ,0

ΩΛ,0
(1 + z′)2

)−1/2

dz′ . (3.12)

The comoving distance will then be fκ(w).

Angular diameter distance. The comoving distance is not something that we can actually measure.
Due to this, in cosmology one usually defines other types of distances. One example is the angular
diameter distance. Consider an object with physical transverse length D; then, in analogy with the
Euclidean case, one defines, with δθ the angle subtended by the object,

DA :=
D

δθ
; (3.13)

the FRW line element implies the following relation for D

D = a(t)fκ(w(t))δθ , (3.14)

so that
DA(z) =

fκ(w(z))

1 + z
. (3.15)

5Notice that we can write a generic 4-momentum as

Pµ = Evµ + (gµν − vµvν)P
ν , (3.6)

where gµν − vµvν projects on the subspace perpendicular to vµ.
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Luminosity distance. Very similarly, again in analogy with the Euclidean case, one can define the
luminosity distance DL via

F =
L

4πD2
L

, (3.16)

where F is the flux (energy per second per area) received from an observer, coming from a source with
luminosity L (emitted energy per second in the emitter frame). To write a formula for DL, one has to be
careful about expansion of the universe effects. Schematically, the luminosity in the emitter frame is

Le ∼
∆Ee

∆te
(3.17)

whereas, when we measure the flux, we see ∆Eo/∆to. The energy redshifts as in Eq. (3.8), ∆Eo =
∆Eea(te); to understand what is ∆to, suppose that a source located at comoving (not conformal) coor-
dinates x emits a light pulse at te and at te + ∆te; the comoving distance the two pulses travel to the
observer are the same, hence

x =

∫ to

te

dt

a
=

∫ to+∆to

te+∆te

dt

a
=⇒

∫ to+∆to

to

dt

a
−
∫ te+∆te

te

dt

a
= 0 ; (3.18)

for small intervals of time, the previous indeed implies

∆to
a(to)

=
∆te
a(te)

. (3.19)

Moreover, at the time of observation, the light spread out to an area A = 4πf2
κ(w), ending up with

F =
∆Eo

4πf2
κ(w)∆to

=
a2(te)Le

4πf2
κ(w)

=⇒ DL = fκ(w)(1 + z) . (3.20)

Horizons. The comoving particle horizon is defined as the maximum comoving distance from which a
signal in the past can influence an observer at time t. If κ = 0, it is defined as

xph(t) =

∫ t

0

dt′

a(t′)
=

∫ a

0

{
1

aH

}
d ln a ; (3.21)

whether this quantity is finite or not (at any given t) depends on the form of a(t). On the last step, we
rewrote xph by explicitly writing what is called the comoving Hubble radius xH := 1/(aH), often used as
a proxy for the sphere an observer at a given time can influence. Conversely, the comoving event horizon
is the maximum comoving distance which can be reached by a signal sent at time t. It is

xeh(t) =

∫ ∞

t

dt′

a(t′)
; (3.22)

this quantity can be (and for our universe, is) finite, meaning there are regions of space which will never
be reached by us, not even in the infinite future.

A Deriving Friedmann equations from GR
In this section, I will use the sign conventions

• Metric: [S1](+−−−)

• Christoffel symbols Γρ
µν =

1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν)

• Riemann: Rµ
αβγ = 2[S2](∂[βΓ

µ
γ]α + Γµ

σ[βΓ
σ
γ]α)

• Ricci: Rµν = [S2][S3]Rα
µαν

• Einstein eq.: Rµν − 1
2Rgµν = [S3]8πGTµν
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A DERIVING FRIEDMANN EQUATIONS FROM GR

with [S1] = [S2] = [S3] = 1. Late latin indices (i, j, k, l etc.), can assume value 1,2 or 3; greek indices
can assume value 0, 1, 2 or 3.

We will use the tetrad (Vierbein) formalism. Rewrite the metric using the tetrad eµ̂

ds2 = ηµ̂ν̂e
µ̂eν̂ , (A.1)

where ηµ̂ν̂ is the Minkowski metric, and

e0̂ = adη =: e0̂0 dη , eî = eîi dx
i , eîj = (a, afκ, afκ sin θ)δ

î
j , xi = (w, θ, φ) ; (A.2)

the idea of the tetrad formalism is to work in a frame where the metric looks locally Minkowskian (thanks
to the equivalence principle, this is always possible). We will denote the inverse of eµ̂ν with eνρ̂ (such that
eµ̂νe

ν
ρ̂ = δµ̂ρ̂ and eνµ̂e

µ̂
ρ = δνρ ). We will need the spin connections, which can be found with6

deµ̂ =: −ωµ̂
ν̂ ∧ eν̂ , (A.5)

implying (we denote with ′ derivatives with respect to the argument of the respective functions)

de0̂ = −ω0̂
ĵ
∧ eĵ = 0 ,

de1̂ = −ω1̂
µ̂ ∧ eµ̂ = a′ dη ∧ dw ;

de2̂ = −ω2̂
µ̂ ∧ eµ̂ = a′fκ dη ∧ dθ + af ′

κ dw ∧ dθ ;

de3̂ = −ω3̂
µ̂ ∧ eµ̂ = a′fκ sin θ dη ∧ dφ+ af ′

κ sin θ dw ∧ dφ+ afκ cos θ dθ ∧ dφ ;

(A.6)

From the previous, we can read (we can lower or raise hatted indices with the Minkowski metric, ωµ̂ν̂ =

ηµ̂ρ̂ω
ρ̂
ν̂ etc., and notice ωµ̂ν̂ = −ων̂µ̂)

ω0̂
1̂
=

a′

a
dw = ω1̂

0̂
,

ω0̂
2̂
=

a′

a
fκ dθ = ω2̂

0̂
,

ω0̂
3̂
=

a′

a
fκ sin θ dφ = ω3̂

0̂
,

ω1̂
2̂
= −f ′

κ dθ = −ω2̂
1̂
,

ω1̂
3̂
= −f ′

κ sin θ dφ = −ω3̂
1̂
,

ω2̂
3̂
= − cos θ dφ = −ω3̂

2̂
.

(A.7)

Once we have the spin connection ω, the Riemann tensor can be found exploiting7

Rµ̂
ν̂ := dωµ̂

ν̂ + [ωµ̂
σ̂ ∧ ωσ̂

ν̂ ] =
1

2
eµ̂ρe

σ
ν̂R

ρ
σαβ dxα ∧ dxβ ; (A.9)

6Recall the formula for exterior derivative

d(aµ...σ dxµ ∧ . . . ∧ dxσ) = (∂νaµ...σ) dx
ν ∧ dxµ ∧ . . . ∧ dxσ , (A.3)

where the outer product of differentials is defined as

dxµ ∧ dxν =
1

2
(dxµ ⊗ dxν − dxν ⊗ dxµ) . (A.4)

7For reference, we show the Christoffel symbols formula in the tetrad formalism,

Γσ
µρ = eσâω

â
b̂µ

eb̂ρ + eσâ∂µe
â
ρ , (A.8)
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A DERIVING FRIEDMANN EQUATIONS FROM GR

We need (H := a′/a)

R0̂
1̂
= H′ dη ∧ dω ;

R0̂
2̂
= H′fκ dη ∧ dθ ,

R0̂
3̂
= H′fκ sin θ dφ ∧ dθ ,

R1̂
2̂
=
(
H2fκ − f ′′

κ

)
dw ∧ dθ ,

R1̂
3̂
=
(
H2fκ − f ′′

κ

)
sin θ dw ∧ dφ ,

R2̂
3̂
=
(
H2f2

κ − f ′
κ
2
+ 1
)
sin θ dθ ∧ dφ ,

(A.10)

From this, one recovers (it should be obvious, but we remark that sum over repeated indices is not implied
in the following equations)

e0̂0e
1
1̂
R0

1µν =
a

a
R0

1µν =⇒ R0
101 = H′ ,

e0̂0e
2
2̂
R0

2µν =
1

fκ
R0

2µν =⇒ R0
202 = H′f2

κ ,

e0̂0e
3
3̂
R0

3µν =
1

fκ sin θ
R0

3µν =⇒ R0
303 = H′f2

κ sin2 θ ,

e1̂1e
2
2̂
R1

2µν =
1

fκ
R1

2µν =⇒ R1
212 =

(
H2fκ − f ′′

κ

)
fκ ,

e1̂1e
3
3̂
R1

3µν =
1

fκ sin θ
R1

3µν =⇒ R1
313 =

(
H2fκ − f ′′

κ

)
fκ sin

2 θ ,

e2̂2e
3
3̂
R2

3µν =
1

sin θ
R2

3µν =⇒ R2
323 =

(
H2f2

κ − f ′
κ
2
+ 1
)
sin2 θ .

(A.11)

Ricci tensor reads (use relations like Rµ
νµν = gµρgνσR

σ
ρνµ)

R00 = Ri
0i0 = −R0

101 −
1

f2
κ

R0
202 −

1

f2
κ sin2 θ

R0
303 = −3H′ ,

R11 = H′ + 2H2 − 2
f ′′
κ

fκ
,

R22 = H′f2
κ + 2H2f2

κ − fκf
′′
κ − f ′

κ
2
+ 1 ,

R33 = (H′f2
κ + 2H2f2

κ − fκf
′′
κ − f ′

κ
2
+ 1) sin2 θ ;

(A.12)

and the Ricci scalar

a2R = a2gµνRµν = −6H′ − 6H2 + 4
f ′′
κ

fκ
− 2

f2
κ

(1− f ′
κ
2
) = −6H′ − 6H2 − 6κ , (A.13)

where on the last step we used the explicit form of fκ for all possible κ.

When using Einstein equations, one should use the stress energy tensor in the new coordinates; in
particular, notice that uµ = (1/a, 0, 0, 0), hence Tµν = a2diag(ρ̄, P̄ , P̄ , P̄ ). The first Einstein equation
reads (we convert to comoving time t instead of conformal time η, so ˙ := ∂/∂t , H = aH, H = ȧ/a)

R00 −
1

2
a2R = 3a2H2 + 3κ = 8πGa2ρ̄+ Λa2 =⇒ H2 =

8πG

3
ρ̄+

Λ

3
− κ

a2
. (A.14)

The 11 Einstein equation instead reads

R11 +
1

2
a2R = a2

(
−2ä

a
−H2

)
− κ = 8πGa2P̄ − Λa2 , (A.15)

ending with the second Friedmann equation (using the first to substitute for H2)

ä

a
= −4πG

3
(ρ̄+ 3p̄) +

Λ

3
. (A.16)
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