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1 Symmetry restoration
You saw in class that the tree level effective potential of the Higgs (or of any field really) gets corrections
at one loop. The structure of the potential near the (actually false) minimum we reside in today does not
change when applying these corrections at zero temperature, i.e. in an empty background. When we go
back in time, on the early universe, the temperature was much higher (today, T0 ≃ 2.7 K), and thermal
effects cannot be neglected any more. Thermal effects do change the structure of the effective potential,
see Fig. 1. This means that the vacuum state, in the early universe, was indeed at χ = 0. This process is
called symmetry restoration, because thermal effects “pushes” the vacuum state back to χ = 0, “undoing”
the spontaneous symmetry breaking.

I would like to remark that symmetry restoration is a little of a misnomer. First of all, when discussing
spontaneous symmetry breaking, there is no actual symmetry which gets broken: the standard model
remains gauge invariant, even when the actual vacuum state does not reside at χ = 0. What gets
“broken” is the invariance of the vacuum state itself, not of the theory, hence the word symmetry used in
this context needs caution. Also, the word restoration implies that you are restoring something that was
broken, but the arrow of time, in what we are gonna talk, points towards the “intact to broken” direction.

Having clarified this, we will now try to discuss the computation of Veff to a simple U(1) gauge theory,
and how to extend to the electroweak theory (in a not too rigorous way).

2 A simple U(1) gauge theory
Consider a U(1) gauge theory for a complex scalar field ϕ

S =

∫
d4x

(
1

2
(Dµϕ)∗Dµϕ− V (ϕϕ∗)− 1

4
FµνFµν

)
=:

∫
d4xL , Dµ = ∂µ+igAµ , Fµν = ∂µAν −∂νAµ ;

(2.1)
this Lagrangian is invariant under the gauge

ϕ→ e−igλϕ , Aµ → Aµ + ∂µλ . (2.2)

It is convenient to define
ϕ =: χeigζ , Gµ := Aµ + ∂µζ , (2.3)

where χ and ζ are real fields; notice that χ and Gµ are gauge invariant. These definitions make sense
if χ ̸= 0. For simplicity, in the following we will always assume this to be the case, or assume that
departures from this assumption do not harm our discussion.

With these, the Lagrangian can be written as

L =
1

2
∂µχ∂

µχ− V (χ2)− 1

4
F 2
G + g2χ2GµGµ , (2.4)

where we see that Gµ can now be interpreted as a massive vector field (hence, we conserve the number
of degrees of freedom of the original Lagrangian). The last term is found by expanding the covariant
derivative term (Dµϕ)∗Dµϕ in terms of the new fields. The equation of motion for χ can be obtained via

δS

δχ
= 0 =⇒ ∂L

∂χ
= ∂µ

∂L
∂∂µχ

, (2.5)
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3 THERMAL EFFECTS

Figure 1: Example of the behavior of the effective potential with temperature. From Mukhanov book.

implying

∂µ∂µχ+
∂V

∂χ
− g2χGµGµ = 0 . (2.6)

Expand χ = χc+φ, where φ is the quantum fluctuation, with ⟨φ⟩ = 0. Inserting this split in the previous,
we obtain

∂µ∂µχc +
∂V (χc)

∂χ
+
φ2

2

∂3V (χc)

∂χ3
− g2G2χc +

[
∂µ∂µφ+ φ

∂2V (χc)

∂χ2
− g2φG2

]
= 0 , (2.7)

where we expanded V on φ and retained up to second order in φ. When we average the previous, the
term in square brackets vanishes due to ⟨φ⟩ = 0, remaining with

∂µ∂µχc +
∂V (χc)

∂χ
+

〈
φ2
〉

2

∂2m2
χ(χc)

∂χ
− 1

2

∂m2
G(χc)

∂χ

〈
G2
〉
=: ∂µ∂µχc +

∂(V (χc) + Veff(χc))

∂χ
, (2.8)

where we defined mG(χ) := χg, and where the effective potential (vacuum plus thermal) we wish to
compute reads

∂(V1(χc) + VT (χc))

∂χ
=

〈
φ2
〉

2

∂3V (χc)

∂χ3
− g2χc

〈
G2
〉
. (2.9)

The equation of motion for Gµ reads

∂ν∂
νGµ − ∂µ∂

νGν + g2χ2Gµ = 0 = ∂ν∂
νGµ + g2χ2Gµ , (2.10)

where we used ∂νGν = 0 (just take the ∂µ derivative to see this). In particular,

∂V (G)

∂Gµ
= g2χ2Gµ , (2.11)

from which one can infer ⟨Gµ⟩ = 0 due to the form of the potential, hence
〈
G2
〉

is the quantum fluctuations
part already.

We can compute
〈
G2
〉

very similarly as how we computed
〈
φ2
〉
, as we will see in the next section.

3 Thermal effects
Consider a field component ψi, where ψi is real; a complex scalar field would have 2 components, a
massive vector field would have 3, a left-handed or right-handed fermion would have 2. In the following,
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we assume we deal with a scalar, and we will later explain which difference arises in the vector and
fermion case. In all this discussion, we neglected minimal couplings with the metric; this assumes that
the metric dynamics is slow and locally negligible. If this holds, we are allowed to locally expand

ψi(x) =

∫
d4k

(2π)4
e−ikxψ̂i(k) , (3.1)

where k = (k0, k⃗) and kx = k0x0 − k⃗ · x⃗. Field components equation of motion of any field (when
neglecting interactions) are just Klein-Gordon, which, when applied to the previous, implies

ψi(x) =

∫
d4k

(2π)4
e−ikxψ̂i(k)(−(k0)2 + k⃗ +m2

φ) = 0 ; (3.2)

the previous is always satisfied if ψ̂i(k) = 0 when −(k0)2 + k⃗ +m2
φ ̸= 0. This means we can write

ψi(k) = δ(−(k0)2 + ω2
k)fi(k⃗) , ωk :=

√
k⃗ +m2

ψi
; (3.3)

exploiting the relation

δ(g(x)) =
∑
i

δ(x− x0i)

|g′(x0i)|
, (3.4)

where x0i are the zeros of the function g, we have (in our case, x0i = ±ωk, g(k0) =
√

−(k0)2 + ω2
k)

ψi(x) =

∫
d3k

(2π)42ωk

(
f(k⃗) e−ikx

∣∣∣∣
k0=ωk

+ f(k⃗) e−ikx

∣∣∣∣
k0=−ωk

)
; (3.5)

defining
ai(k⃗) = (2π)5/2

√
2ωkfi(k⃗) = a∗−k⃗ , (3.6)

where the last equality comes from the fact that ψi is real, we can write

ψi(x) =

∫
d3k

(2π)3/2
√
2ωk

(
ai(k⃗)e

−ikx + a†i (k⃗) e
ikx
)∣∣∣∣
k0=ωk

, (3.7)

where we promoted ak⃗ to an operator. The normalization we used in Eq. (3.6) ensures that the equal
time commutation relation

[ψi(x), ∂0ψ(y) ]

∣∣∣∣
x0=y0

= iδ(x⃗− y⃗) , (3.8)

translates into
[ai(k⃗), a

†
i (k⃗

′)] = δ(k⃗ − k⃗′) . (3.9)

Recall to change Eq. (3.8) and Eq. (3.9) with anticommutators in the case of fermions.

There is a slight difference for the vector (fermion) fields, which come from the polarization vectors ϵµi
(spinors ui, vi). The expansion Eq. (3.7) for Gµ reads

Gµ(x) =

∫
d3k

(2π)3/2
√
2ωk

(
ϵµi ai(k⃗)e

−ikx + ϵ∗µi a†i (k⃗) e
ikx
)∣∣∣∣
k0=ωk

, (3.10)

whereas for (Dirac) fermions

Ψ(x) =
∑
i=1,2

∫
d3k

(2π)3/2
√
2ωk

(
uiai(k⃗)e

−ikx + vib
†
i (k⃗) e

ikx
)∣∣∣∣
k0=ωk

. (3.11)

Suppose now that we have a grand-canonical ensemble of ψi particles at temperature T . It is characterized
by

ρ =
e−β(H−µN)

Tr
(
e−β(H−µN)

) , (3.12)

where H is the Hamiltonian of the system, β = 1/T and the trace is over all the (orthonormal) states of
the system, N is the number operator and µ the chemical potential. The expectation value of an operator
A would read

A = Tr(ρA) . (3.13)
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Recall that we can build the Fock space of particles with wavevector k⃗ via

∣∣nk⃗〉 ∝ (a†i (k⃗))
n

√
n!

|0⟩ . (3.14)

With this, we can write the number operator

N =

∫
d3k a†i (k⃗)ai(k⃗) =⇒ N

∣∣nk⃗〉 = nk⃗
∣∣nk⃗〉 , (3.15)

and the Hamiltonian would read

H =

∫
d3k ωka

†
i (k⃗)ai(k⃗) =⇒ H

∣∣nk⃗〉 = ωknk⃗
∣∣nk⃗〉 . (3.16)

Any possible state can be characterized with the set {nk⃗} := {0k⃗, 1k⃗, . . .}, where a single nk⃗ denotes the
number n of particles with wavevector k⃗. Then

Z := Tr
(
e−β(H−µN)

)
=
∑
{n
k⃗
}

〈
{nk⃗}

∣∣e−β(H−µN)
∣∣{nk⃗}〉 = ∑

{n
k⃗
}

e−β
∑
k⃗
n
k⃗
(ωk−µ) =

∏
k⃗

α∑
n=0

e−βn(ωk−µ) ,

(3.17)
where α = ∞, 1 for bosons and fermions respectively (fermions cannot occupy the same k⃗ state). Using
the geometric series for the boson case, and simple two terms sum for fermions, we can write

Z =

{ ∏
k⃗

1
1−e−β(ωk−µ) for bosons ,∏

k⃗(1 + e−β(ωk−µ)) for fermions ;
(3.18)

Then one can easily compute

⟨N⟩ = 1

β

∂ lnZ

∂µ
=
∑
k⃗

fk⃗ :=

{ ∑
k⃗

1
eβ(ωk−µ)−1

for bosons ,∑
k⃗

1
eβ(ωk−µ)+1

for fermions ;
(3.19)

from which one can infer1

⟨a†i (k⃗)ai(k⃗
′)⟩ = δ(k⃗ − k⃗′)

1

eβ(ωk−µ) ± 1
= δ(k⃗ − k⃗′)fk⃗ . (3.23)

We are finally ready to compute the expectation value (recall
〈
ak⃗ak⃗′

〉
= ⟨a†

k⃗
a†
k⃗′
⟩ = 0)

〈
ψ2
i

〉
=

∫
d3k

(2π)3/2
d3k′

(2π)3/22
√
ωkωk′

(
⟨a†i (k⃗)ai(k⃗

′)⟩e−ix(k⃗′−k⃗) + ⟨ai(k⃗)a†i (k⃗
′)⟩︸ ︷︷ ︸

⟨a†i (k⃗′)ai(k⃗)⟩+δ(k⃗−k⃗′)

eix(k⃗
′−k⃗)

)

=

∫
d3k

(2π)3
1

ωk

(
1

2
+ fk⃗

)
.

(3.24)

This results holds for bosons. Notice that, for ⟨GµGµ⟩, taking into account the polarization ϵµi , we would
have, exploiting the relation ϵµi ϵjµ = −δij

GµGµ ∼ (ϵµi ai + ϵµ∗i a†i )(ϵjµaj + ϵ∗jµa
†
j) = −

3∑
i=1

(ai + a†i )(ai + a†i ) (3.25)

1Notice〈
n
k⃗′′

∣∣e−β(H−µN)a†
k⃗′ak⃗

∣∣n
k⃗′′

〉
=

〈
n
k⃗′′

∣∣e−βnk(ωk−µ)δ(k⃗′′ − k⃗)nka
†
k⃗′

∣∣(n− 1)
k⃗′′

〉
=

{
0 , k⃗′′ ̸= k⃗′

nke
−βnk(ωk−µ)δ(k⃗′ − k⃗) , k⃗′′ = k⃗′

(3.20)
So

⟨a†i (k⃗)ai(k⃗
′)⟩ = δ(k⃗′ − k⃗)

∑α
n=0 e

−βn(ωk−µ)∏
k⃗′′

∑α
n=0 e

−βn(ωk′′−µ)
, (3.21)

to be compared with
1

β

∂ lnZ

∂µ
=

∑
k⃗

∑α
n=0 e

−βn(ωk−µ)∏
k⃗′′

∑α
n=0 e

−βn(ωk′′−µ)
. (3.22)
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which would yield −3 times the result for a single scalar field. Notice that 3 is the number of degrees of
freedom of a massive vector field. Generically, for a vector field, we can write

⟨GµGµ⟩ /(d.o.f) = −
∫

d3k

(2π)3
1

ωk

(
1

2
+ fk⃗

)
. (3.26)

For fermions, instead, we would have to insert the spinors ui, vi, i = 1, 2; Exploiting
∑
i ūiui = 4m =

−
∑
i v̄ivi, we have (schematically)〈

Ψ̄Ψ
〉
∼
〈
(v̄jbj + ūja

†
j)(uiai + vib

†
i )
〉
=
∑
i

ūiui⟨a†iai⟩+
∑
i

v̄ivi⟨bib†i ⟩ = 4m⟨a†1a1⟩−4m(−⟨b†1b1⟩+δ(k⃗−k⃗′))

(3.27)
where we accounted for anticommutation rules for fermions; we thus have, per degree of freedom

〈
Ψ̄Ψ
〉
/d.o.f. = mψi

∫
d3k

(2π)3
1

ωk

(
−1

2
+ fk⃗

)
. (3.28)

The vacuum contribution can be written

∂V1(χc)

∂χ
=

1

2

∂m2
ψi
(χc)

∂χ

1

2

∫
d3k

(2π)3
1√

k⃗2 +m2
ψi
(χc)

=
∂

∂χ

∣∣∣∣
χ=χc

∫
d3k

(2π)3

√
k⃗2 +m2

ψ(χ)

2
=:

I(m2
ψi
)

4π2

(3.29)
(just do the derivative to see that this holds). Regularizing the divergence and renormalizing at a scale
µ, we can rewrite it

V1 =
m4
ψi
(χc)

64π2
ln
m2
ψi
(χc)

µ2
. (3.30)

The thermal contribution can be written as

VT =
1

2

∂2m2(χc)

∂χ

∫
dk

(2π)3
4πk2√

k2 +m2
ψi
(χc)

1

e
β
√
k2+m2

ψi
(χc) ± 1

=
1

4π2β4

∂2β2m2(χc)

∂χ

∫
dxx2√

x2 + β2m2
ψi
(χc)

1

e

√
x2+β2m2

ψi
(χc) ± 1

= ∓ 1

2π2
T 4 ∂

∂χ

∣∣∣∣
χ=χc

∫
dxx2 ln

(
1± e

−
√
x2+β2m2

ψi
(χ)
)

=:
1

4π2
F±

(mψi

T

)
.

(3.31)

Notice that the same results hold for vector and fermions; one should notice that the couplings of fermions
and vectors to scalars follow

L ∼ −m2
GG

µGµ +
mΨ

χc
Ψ̄Ψ =

1

2

∂m2
G(χc)

∂χ
(−GµGµ) +

1

2

∂m2
Ψ(χc)

∂χ

(
1

m
Ψ̄Ψ

)
(3.32)

where mΨ(χ) = yΨχ, with yΨ the Yukawa coupling. Combining the previous with Eq. (3.26) and
Eq. (3.28), we can conclude with the general result

Veff =
∑

bosons

(
gi
m4
ψi
(χc)

64π2
ln
m2
ψi
(χc)

µ2
+

gi
4π2

F±

(mψi

T

))
+
∑

fermions

(
−gi

m4
ψi
(χc)

64π2
ln
m2
ψi
(χc)

µ2
+

gi
4π2

F±

(mψi

T

))
(3.33)

where gi is the number of degrees of freedom for boson/fermion i.

4 Back to U(1) gauge theory and extension to electroweak theory
Armed with Eq. (3.33), we can write

〈
G2
〉
=

∂

∂χ

(
3

4π2

(
I(mG) + T 4F−(mG/T )

))
, (4.1)
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where mG = χcg, and where the factor 3 comes from the 3 degrees of freedom of a massive vector field.
Hence,

Veff = V (χc) +
3m4

G(χc)

64π2
ln
m2
G(χc)

µ2
+

3T 4F−(mG/T )

4π2
. (4.2)

We can extend the previous to the Higgs in electroweak theory; considering the equation of motion for
an Higgs-like field

∂µ∂
µχc + V ′(χc)−

g2 + g′
2

4
χc ⟨ZµZµ⟩ −

g2

2
χc

〈
W+
µ W

−µ〉+ mt

χc
⟨t̄t⟩ = 0 , (4.3)

where we included the Yukawa coupling for the top quark (there should be the one for all fermions, but
the top is the one that dominates), and we have the contribution from the 3 vector bosons Zµ, W+

µ , W−
µ .

Then, summing all the different contribution of the particles, with their number of degrees of freedom
factor, we obtain the Veff coming from all other non-Higgs particles to be

Veff = V (χc)+
1

64π2

(
3m4

Z ln
m2
Z

µ2
+ 6m4

W ln
m2
W

µ2
− 12m2

t ln
m2
t

µ2

)
+

1

4π2

(
3F−

(mZ

T

)
+ 6F−

(mW

T

)
+ 12F+

(mt

T

))
(4.4)

where for the top we counted 3 for the colors, 2 for left and right handed, 2 for the spin.
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