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1 General covariance
General Relativity (GR) is a generically covariant theory, meaning that its equations are expressed with
objects which are covariant with respect to generic coordinate transformation. In other words, GR is
independent on which coordinate system (or reference frame) one uses. This seems like a trivial statement,
but notice that, for example, the famous second Newton law

F⃗ = ma⃗ , (1.1)

is not covariant under general coordinate changes. Going to an accelerated reference frame, you end up
with spurious apparent forces an accelerated observer has to introduce to explain what he sees. Eq. (1.1)
is however covariant under rotations. This is not surprising, since Eq. (1.1) is expressed using vectors,
which have precise behaviour (a covariant behaviour) with respect of rotations.

What then one needs in GR is to express quantities with respect to tensors. A tensor T γδ...
αβ...(y) of rank

(p, q), when undercomes a coordinate change y → x, transforms as

Tµ1...µp
ν1...νq

(x) =

(
∂yα1

∂xν1
. . .

∂yαp

∂xνp

)(
∂xµ1

∂yβ1
. . .

∂xµp

∂yβp

)
T β1...βp
α1...αq

(y) ; (1.2)

scalar quantities (which “have no indices”) do not change under coordinate transformation.

For an easy example, you know that, in the coordinates where FRW line element reads

ds2 = dt2 − a2 dyi dyi , (1.3)

(where t = y0) a comoving observer 4-velocity would read

uµ(y) = (1, 0, 0, 0) ; (1.4)

when one wants to use conformal time, dη = dt /a, one has (η = x0, xi = yi)

u0(x) =
∂x0

∂yµ
uµ(y) =

∂η

∂t
u0(x) = 1/a , (1.5)

which is what one expects. Notice also that the metric coefficients transform as

gµν(x) =
∂yα

∂xµ

∂yβ

∂xν
gαβ(y) . (1.6)

Indeed, g00(x) = a2g00(y) = a2.

2 Making quantities covariant

Suppose we have a scalar function f(x). Is ∂f
∂xµ covariant? The answer is trivially yes, due to the chain

rule. In particular, you obtain a (0, 1) tensor from the scalar f , which is a (0, 0) tensor. But it is also
easy to see that the derivative of a vector transforms as

∂uµ(x)

∂xν
=

∂yα

∂xν

∂

∂yα

(
∂xµ

∂yβ
uβ(y)

)
=

∂yα

∂xν

∂xµ

∂yβ
∂uµ

∂yα
+

[
∂yα

∂xν

∂2xµ

∂yαyβ

]
; (2.1)
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the term in square brackets is what “breaks” covariance. It turns out that proper way to define a covariant
derivative is

Dµu
ν = ∂µu

ν + Γν
µσu

σ , (2.2)

where Γµ
νρ is the Christoffel symbol (notice the analogy with gauge theories in QFT). The covariant

derivative changes a (p, q) tensor to a (p, q + 1) tensor.

Another issue comes in integration; in fact, under generic coordinate change, the volume element changes
as

d4x = det

(
∂xµ

∂yν

)
d4y ; (2.3)

not only it is not covariant, but we would expect the volume element to be invariant (if I integrate a
scalar, I want to end up with another scalar). It is then a straightforward consequence of Eq. (1.6) to
show that an invariant volume element definition is

d4x
√

−det(g) ; (2.4)

moreover, with this definition, the volume element in special relativity is just d4x, since − det(g) = 1 for
Minkowski (a Lorentz transformation does not change this result, since detΛ = 1, where Λ is a Lorentz
transformation matrix). It makes sense that the metric tells how volume elements are constructed; to
convince yourself that this is the correct way to define the invariant volume element, consider the 3D flat
metric in spherical coordinates

ds2 = dr2 + r2(dθ2 + sin2 θ dφ2) ; (2.5)

then Eq. (2.4) (which for this specific case becomes d3x =
√
det g d3y) tells us that

d3x = r2 sin θ dr dθ dφ , (2.6)

as expected.

This suggests the prescriptions to pass from Special Relativity (SR) to GR: substitute

ηµν → gµν , ∂µ → Dµ , d4x →
√
−det g d4x . (2.7)

3 Scalar field in GR
Using all the prescriptions in Eq. (2.7) for the action of a scalar field, we have (recall that covariant
derivatives on scalars are equivalent to usual partial derivatives)

Smatter =

∫
d4x

√
−det g

(
1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
=:

∫
d4x

√
−det gL ; (3.1)

to the previous, we should add the part of the action which will give rise to the LHS of the Einstein
equations. This part is called Einstein-Hilbert action, and reads

SEH =
1

16πG

∫
d4x

√
− det gR , (3.2)

where R is the Ricci scalar. Then S = SEH + Smatter. The equation of motion for ϕ follows from

δS

δϕ
= 0 =⇒ ∂

√
−det gL
∂ϕ

= ∂µ
∂
√
−det gL
∂∂µϕ

, (3.3)

which yields
1√

− det g

∂

∂xµ

(√
−det ggµν∂νϕ

)
+

∂V

∂ϕ
= 0 . (3.4)

Specialized to FRW, we obtain (ϕ = ϕ(t))

1

a3
∂t(a

3∂tϕ) +
∂V

∂ϕ
= 0 =⇒ ∂2

t ϕ+ 3Hϕ+
∂V

∂ϕ
= 0 ; (3.5)

notice the 3Hϕ term, which is a friction term coming from the expansion of the universe.
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Einstein equations are obtained via

δS

δgµν
= 0 =⇒ 1

16πG

(
∂
√
−det gR

∂gµν
−

[
∂σ

∂
√
−det gR

∂∂σgµν

])
+

∂
√
−det gL
∂gµν

. (3.6)

To compute such a functional derivative, one needs

∂
√
−det g

∂gµν
= − 1

2
√
−det g

∂ det(g)

∂gµν
; (3.7)

notice that we can write
det g = eln det g = eTr ln g , (3.8)

implying
∂ det g

∂gµν
= det gTr

(
g−1 ∂g

∂gµν

)
= det(g)gρσ

∂gρσ
∂gµν

; (3.9)

notice
∂gρσg

ρσ

∂gµν
=

∂δρρ
∂gµν

= 0 =⇒ gρσ
∂gρσ
∂gµν

= −gρσ
∂gρσ

∂gµν
= −gµν , (3.10)

ending up with
∂
√
−det g

∂gµν
= −

√
−det g

2
gµν . (3.11)

We thus have

1

16πG

∂
√
−det ggρσRρσ

∂gµν
=

√
− det g

16πG

(
Rµν − 1

2
gµνR

)
+

[√
−det g

16πG
gρσ

∂Rρσ

∂gµν

]
; (3.12)

one recognizes the LHS of Einstein equations on the round brackets, whereas the term on square brackets
is a boundary term (which cancels with the term in square brackets in Eq. (3.6)); this takes a little too
long to show, hence it is left as an exercise. Then, one has finally, from Eq. (3.6)

Rµν − 1

2
gµνR = −8πG

(
2√

−det g

∂
√
−det gL
∂gµν

)
. (3.13)

the previous is exactly the Einstein equation (using the sign conventions used in class), granted one
identifies (from now on, g := det g as it is customary)

Tµν =
2√
−g

δSmatter

δgµν
. (3.14)

The energy-momentum tensor reads

Tµν = ∂µϕ∂νϕ− gµν

(
1

2
gγδ∂γϕ∂δϕ− V (ϕ)

)
. (3.15)
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