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1 The model of power-law inflation
You saw in class that one can study the fluctuations evolution in an inflationary scenario by looking at
the Sasaki-Mukhanov equation

d2Rq

dη2
+

2

z

dz

dη

dRq

dη
+ q2Rq = 0 , R := Ψ +

aφ

z
, z :=

a ˙̄ϕ

H
. (1.1)

where Ψ is the gravitational potential (in the Newtonian gauge) and η is the conformal time. We denote
the scalar field by

ϕ = ϕ̄+ φ , (1.2)

where ϕ̄ is the background value and φ the fluctuation around the background. Rq are the Fourier
components of the gauge invariant quantity R. The use of R over the field Ψ, φ comes from the fact
that R fluctuations are conserved outside the horizon (plus, it is a gauge invariant quantity). This allows
us to treat perturbations coming from inflation, whose horizon re-entry corresponds to well understood
epochs (like from BBN onwards).

We can discuss Eq. (1.1) analytically for an exponential potential of the form

V (ϕ) = V0e
−λϕ . (1.3)

The inflationary model with this kind of potential is called power-law inflation, for a reason we will soon
see. The energy of the background scalar field will read

ρ =
1

2
˙̄ϕ2 + V0e

−λϕ̄ ; (1.4)

from its equation of motion
¨̄ϕ+ 3H ˙̄ϕ+

∂V (ϕ̄)

∂ϕ
= 0 , (1.5)

and the first Friedmann equation

H2 =
8πG

3

(
1

2
˙̄ϕ2 + V0e

−λϕ̄

)
. (1.6)

Deriving Friedmann, and then using Eq. (1.5)

2HḢ =
8πG

3
( ˙̄ϕ ¨̄ϕ+ V ′(ϕ̄) ˙̄ϕ) =

8πG

3
(−3H ˙̄ϕ2) =⇒ Ḣ = −4πG ˙̄ϕ2 . (1.7)

This model is particular, in which there is an exact solution to Eqs. (1.6)(1.5), which is (just substitute
and see)

ϕ̄ =
1

λ
ln

8πGV0ϵ
2t2

3− ϵ
, H =

1

tϵ
, ϵ =

λ2

16πG
; (1.8)

we can verify that ϵ as defined here is indeed the slow-roll parameter for this model

ϵ = − Ḣ

H2
=

4πGV ′2

9H4
=

1

16πG

(
V ′

V

)2

=
λ2

16πG
; (1.9)
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1 THE MODEL OF POWER-LAW INFLATION

notice that, since ϵ is constant,

H =
1

ϵt
=⇒ a(t) = a0

(
t

t0

)1/ϵ

; (1.10)

this behaviour of the scale factor is why this model is called power-law inflation. Notice the condition for
accelerated expansion

ä ∝ 1

ϵ

(
1

ϵ
− 1

)
t1/ϵ−2 =⇒ ä > 0 if

1− ϵ

ϵ
> 0 , (1.11)

hence ϵ < 1. Thanks to Eq. (1.10), we can easily express the δ slow-roll parameter

δ :=
1

2

Ḧ

HḢ
= −ϵ . (1.12)

We can then express the conformal time as

η ∝
∫ t

−∞

dt′

a
= −a0t

1/ϵ
0

ϵ

1− ϵ
t−(1−ϵ)/ϵ ∼ − 1

aH
, (1.13)

and for simplicity, we set a0 = 1 so that (I keep t0 to keep track of dimensions)

η = −t
1/ϵ
0

ϵ

1− ϵ
t−(1−ϵ)/ϵ =⇒ t = t0

(
−1− ϵ

ϵt0
η

)−ϵ/(1−ϵ)

; (1.14)

with Eq. (1.8), we can write
˙̄ϕ =

2

λt
=⇒ 2

z

dz

dη
= − 2

(1− ϵ)η
. (1.15)

We can finally write the Sasaki-Mukhanov equation in the form (with s := −ηq)

d2Rq

ds2
− 2ν − 1

s

dRq

ds
+Rq = 0 , ν =

3− ϵ

2(1− ϵ)
(1.16)

This is a Bessel equation, whose solution we can write as a linear combination of first and second kind
Hankel functions1 ,

Rq(s) = sν(a1H
(1)
ν (s) + a2H

(2)
ν (s)) , (1.19)

where H
(1)
ν = H

(2)∗
ν . We need the following asymptotic behavior of Hankel functions H

(1)
ν (s) → −

√
2
π e

− 1
4 iπ(2ν−3) e

is

√
s
, s ≫ 1 inside horizon ,

H
(1)
ν (s) → −i 2

νΓ(ν)
π s−ν , s ≪ 1 outside horizon .

(1.20)

We can give the initial conditions deep inside the horizon, −qη = s ≫ 1, where we can set

φq ∼ e−iqη

a
, Ψq ∼ −i

4πG ˙̄ϕ

sH2
aφq ∼ O

(
1

s

)
, (1.21)

in particular, we can neglect Ψq in the expression of Rq; this leads us to

Rq →
s≫1

−sν
√

2

sπ
(a1e

−iπ(2ν−3)/4eis + a2e
iπ(2ν−3)/4e−is) ∼ Hφq

˙̄ϕ
∼ H

a ˙̄ϕ
eis , (1.22)

this implies a2 = 0 and

a1 = − H

asν ˙̄ϕ

√
πs

2
eiπ(2ν−3)/4 ; (1.23)

1A Bessel equation of the form

d2y

dx2
−

2ν − 1

x

dy

dx
+

(
β2γ2x2γ−2 +

ν2 − n2γ2

x2

)
y = 0 , (1.17)

has solutions
y = xν(AH

(1)
n (βxγ) +BH

(2)
n (βxγ)) , (1.18)

if n ̸= N. In our case, n2 = ν2, β = γ = 1.
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2 CONNECTING WITH OBSERVABLES

we end up with, noticing (we use Eq. (1.8),(1.14))

H

a ˙̄ϕ
=

λ

2ϵ

(
1− ϵ

ϵ

(−η)

t0

)1/(1−ϵ)

(1.24)

with

Rq = − λ

2ϵ

√
πqt0
2

(
1− ϵ

ϵ

)1/(1−ϵ)(−η

t0

)ν

eiπ(2ν−3)/4H(1)
ν (s) . (1.25)

Outside the horizon, Eq. (1.25) reads

Rq → 2ν−3/2Γ(ν)λt
1/2−ν
0

ϵ
√
π

(
1− ϵ

ϵ

)1/(1−ϵ)

eiπ(2ν−3)/4q1/2−ν ; (1.26)

notice the time independence (as expected) and the q behaviour, which is typical of slow-roll inflation
and not limited to the power-law inflation.

We can finally relate this quantity to physical observables, by looking at (for super-horizon modes)

〈
R2

〉
=

∫
d3q

(2π)32q
|R2

q | =
t1−2ν
0

2π2

∫
d ln q

22ν−3Γ2(ν)λ2

ϵ2π

(
1− ϵ

ϵ

)2/(1−ϵ)

q3−2ν =:

∫
d ln q∆2

R(q) ; (1.27)

2 Connecting with observables
∆2

R is connected to the density fluctuation power spectrum, and it is an observable (for example, by
looking at correlations in the CMB spectrum). It reads

∆2
R =

22ν−4Γ2(ν)λ2t1−2ν
0

ϵ2π3

(
1− ϵ

ϵ

)2/(1−ϵ)

q3−2ν =: As

(
q

q∗

)ns−1

, (2.1)

where on the last equality we used the usual parametrization of ∆2
R, with the pivot scale q∗ = 0.05Mpc−1.

From CMB, we measured
As ≃ 2× 10−9 , ns ≃ 0.96 . (2.2)

For the power law model, this implies

ns = 4− 2ν =
1− 3ϵ

1− ϵ
≃ 1− 3ϵ =⇒ ϵ =

λ2

16πG
≃ 0.015 , (2.3)

which is compatible with all our slow-roll assumptions, necessary for inflation to work. To connect with
the results one obtains with other inflationary potentials (and to remove the annoying t0), we can express
As for this model by using H(tq), where tq is the time the fluctuations characterized by q re-enters the
horizon (this is where a slight q dependence enters in other potentials, here it is not really there). We
have

q

a(tq)
= H(tq) =⇒ tq = (ϵq)ϵ/(1−ϵ)t

1/(1−ϵ)
0 =⇒ H(tq) =

1

ϵt
1/(1−ϵ)
0 (ϵq)ϵ/(1−ϵ)

. (2.4)

We can then write (use λ2 = 16πGϵ)

As = ∆2
R(q∗) =

H2(tq∗)

π2
22νΓ2(ν)Gϵ2ϵ/(1−ϵ)

(
1− ϵ

ϵ

)2/(1−ϵ)

(2.5)

(notice 3− 2ν = −2ϵ/(1− ϵ) and 1− 2ν = −2/(1− ϵ)).

We see that (ν ≃ 3/2, Γ(ν) ≃
√
π/2)

H2(tq∗) ≃
Asπ

2G
ϵ(1+ϵ)/(ϵ−1)

(
1− ϵ

ϵ

)−2/(1−ϵ)

=⇒ H(tq∗) ≃ 1× 1014 GeV , (2.6)

which is consistent with expectations regarding the inflation scale.

Is the exponential potential then a good inflation model? No, because inflation needs to end, and in this
scenario it does not. However, all our derivations rely on the fact that the potential is exponential just at
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B HORIZON PROBLEM

around horizon crossing, not everywhere. With this limitation, is this scenario allowed by observations?
Unfortunately no. You will (probably) see in the lecture the fluctuation contribution from gravitational
waves (tensor contribution). The tensor to scalar ratio

rT =
∆2

T

∆2
R

(2.7)

is measurable, and under very generic conditions (exponential potential included) the relation

r = 16ϵ , (2.8)

holds. This can be shown in the following. If we choose a gauge where Ψ = 0, then R, being gauge
invariant, is unaffected, and we can write

R =
H
˙̄ϕ
φ =⇒ ∆2

R =
λ2

4ϵ2
∆2

φ =
4πG

ϵ
∆2

φ ; (2.9)

the relevance of this is that from the gravitational waves action, (from ds2 = dt2 − a2(δij + hij) dx
i dxj)

S =
1

16πG

∫
d4x

√
−gR , (2.10)

one obtains the same equations for a scalar, once one normalizes hij =
√
32πGfij . Then

∆2
T = 2× 32πG∆2

φ , (2.11)

where the factor 2 comes from the 2 gravitational waves polarizations. Then one recovers Eq. (2.8).

For our model, r ≃ 0.25, and this exceeds the experimental bound given by CMB, hence power-law
inflation is ruled out.

A Units
Quantization of fields is done via

φ =

∫
dq⃗

(2π)3/2
√
2q

(φqaq⃗e
iq⃗x + φ∗

q⃗a
†
qe

−iq⃗x )

∣∣∣∣
q0=ωq

(A.1)

aq, a†q obey the commutation relation

[aq, a
†
q′ ]q0=q′0 = δ(q⃗ − q⃗′) , (A.2)

hence aq has mass dimensions −3/2, so φq is dimensionless (since φ has mass dimension 1). For the same
reason, Rq has mass dimensions −1.

B Horizon problem
To solve the horizon and flatness problem, we need (exploiting the previous)

a(t2)

a(t1)
=

(
t2
t1

)1/ϵ

= exp

(
λ

2ϵ
(ϕ2 − ϕ1)

)
∼ e60 . (B.1)

Notice that λ has dimensions of inverse mass. By setting λ = α/Minf as the mass scale, we can see that
the field excursion ∆ϕ = ϕ2 − ϕ1 obeys

∆ϕ

Minf
≃ 120ϵ

α
; (B.2)

we saw that ϵ ≃ 0.02, hence the field excursion during inflation is of order the mass scale Minf , which for
this model is . The excursion is not really a scale.
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