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Luca Teodori

1 An ultralight axion
Consider a scalar field as a massless Goldstone boson, associated with spontaneous symmetry breaking at
a scale f of some beyond standard model symmetry; this breaking would happen in the early universe. For
concreteness, we can consider a complex scalar field φ, and the symmetry to be U(1). At the symmetry
breaking scale f ,

φ = χeiϕ/f , ⟨χ⟩ = f√
2
. (1.1)

The angular field ϕ is the scalar field we are interested about. Non-perturbative effects can generate a
potential for this ϕ, but, given the identification

ϕ

f
∼ angle , (1.2)

we can only allow a potential which is periodic of 2π; consider one of the form

V (ϕ) = Λ4(1− cos(ϕ/f)) , (1.3)

where Λ is the scale where non-perturbative effects kick in. For ϕ < f , we can expand

V (ϕ) ≃ 1

2
m2ϕ2 , m2 =

Λ4

f2
; (1.4)

since this potential comes from non-perturbative effects, we expect m to be very small (and all next
corrections to be completely negligible). All other possible couplings to standard model fields are similarly
suppressed.

The construction we sketched here appears in many BSM theories, most notably the QCD axion. This
motivates to look into the cosmology of ultralight fields. For ultralight, we mean masses 10−22 eV≲ m ≲
10−3 eV. Can such a low mass particle be dark matter? Notice that the occupation number of these
particles, if they were to be dark matter, must be enormous

N =
∆N

d3x d3k
≃ n

k3
≃ ρdm

m(mv)3
≃ 1087

( ρdm

0.4GeV cm−3

)(10−20 eV

m

)4(
200 km s−1

v

)3

; (1.5)

due to Pauli exclusion principle, we cannot consider an ultralight fermion as a dark matter candidate
(Tremaine-Gunn bound). Can such a particle be a good dark matter candidate? Can we produce enough
of it, and if so, does it behave like cold dark matter?

In the next section, we will see a mechanism, a non-thermal (differently from freeze-out) mechanism for
dark matter production, relevant for what it is called UltraLight Dark Matter (ULDM). We will not have
any particular model in mind, we just consider a generic free massive scalar field minimally coupled to
gravity.

2 The misalignment mechanism
A massive scalar field ϕ in an expanding universe obeys

ϕ̈+ 3Hϕ̇+m2ϕ = 0 ; (2.1)
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2 THE MISALIGNMENT MECHANISM

if a ∝ tp, which holds in radiation or matter domination for example, we have H = p/t, and we can recast
the previous as a Bessel equation, with s := mt, ′ := d/ds ,

ϕ′′ − 2ν − 1

s
ϕ′ + ϕ = 0 , ν =

1− 3p

2
, (2.2)

As we know, we can write this as a linear combination of first and second kind Hankel functions,

ϕ ∝ sν(a1H
(1)
ν (s) + a2H

(2)
ν (s)) ∝ a−3/2t1/2(a1H

(1)
ν (s) + a2H

(2)
ν (s)) , (2.3)

where we used tν ∝ a−3/2t1/2. Recall the asymptotic behavior of Hankel functions H
(1)
ν (s) ∼ eis√

s
, s≫ 1 ,

H
(1)
ν (s) ∼ s−ν , s≪ 1 .

(2.4)

notice that, since H ∝ 1/t, the regime s≪ 1 (very early times) is the regime H ≫ m, where the damping
coming from the expansion of the universe dominates and the field is stuck at its initial value, whereas
for s ≫ 1, harmonic-like oscillations dominate, as the asymptotic behavior of H(1)

ν (s) also shows. In
particular, at very early times, we can write

ϕ̇i = 0 , ϕi = fθi , (2.5)

where the initial condition was inspired from the interpretation (see e.g. Eq. (1.3)) that ϕ/f is an angle.
In particular, one can expect to set θi = O(1) in the stuck initial conditions. In the regime s ≪ 1, this
field behaves as dark energy. In the regime s≫ 1, we have

ϕ ∝ a−3/2eimt , (2.6)

in particular,

ρ =
1

2
ϕ̇2 +

1

2
m2ϕ2 ∝ a−3 , (2.7)

which is the expected behavior of a dark matter candidate. We can say that the time of the transition
between the dark energy and the dark matter regime happens for s = 1 (it is an approximation, in
the following we are interested only on estimates). Assuming this transition happens during radiation
domination, where a = a0(t/t0)

1/2, we can estimate

mt = m

(
aosc
a0

)2

t0 = 1 =⇒ a2 =
1× 10−20 eV

m
1× 10−20 eV−1 × 70 km s−1 Mpc−1 , (2.8)

where we approximated t0 ∼ 1/H0. This yields the approximate scale factor aosc at which the field starts
to oscillate to be

a ∼ 10−6 1× 10−20 eV

m
, (2.9)

which is after BBN, deep into the radiation dominated era. Approximating

ρ(a) ∼ ρ(aosc)
(aosc
a

)3
, (2.10)

where ρ(aosc) is the initial, stuck density value before oscillation starts, which we write as

ρ(aosc) =
1

2
m2f2θ2i , (2.11)

we can estimate the critical parameter

Ω =
3H2

0

8πG
ρ(a = 1) ∼ 8π

3

(
fθi
Mpl

)2(
m

1× 10−20 eV

)1/2

10−18 1

H2
0

. (2.12)

Assuming θi = O(1), we end up with the estimate

Ω ≃ 0.1

(
f

1× 1016 GeV

)2(
m

1× 10−20 eV

)1/2

. (2.13)

This is the misalignment mechanism for dark matter production, called like this because it relies on the
misalignment of the initial value θi from zero to determine the dark matter abundance. We remark that
this mechanism is not thermal.
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3 WAVE DARK MATTER IN GALAXIES: THE SCHRÖDINGER-POISSON EQUATIONS

3 Wave dark matter in galaxies: the Schrödinger-Poisson equa-
tions

Most of the interesting features of ULDM comes from (cosmological) small scales, i.e. at the galactic
scale. Those are the scales where this DM candidate clearly differentiate from the standard collisionless
DM, and those are the scales where we can hope to detect (or more realistically, set bounds on) ULDM.
This is due to the associated De-Broglie wavelength of ULDM, which is of astrophysics scale

λ ∼ 6 pc

(
1× 10−20 eV

m

)(
2× 102 km s−1

v

)
. (3.1)

The relevant action reads
S =

∫
d4x

√
−g
(
1

2
gµν∂µϕ∂νϕ− 1

2
m2ϕ2

)
; (3.2)

the metric we assume is the first order perturbed flat Robertson-Walker metric in Newtonian gauge,
neglecting tensor and residual vector modes. It reads

ds2 = −(1 + 2Φ) dt2 + a2(t)(1− 2Φ) dx⃗2 ; (3.3)

(neglecting the anisotropic part of the stress-energy tensor allows us to equate the two scalar field per-
turbations).

By varying the action with respect to the field, one can obtain the equation of motion

1√
−g

∂µ(
√
−ggµν∂νϕ) = m2ϕ . (3.4)

To first order in Φ and neglecting its time variation (weak field limit), recalling
√
−g = (a6(1 + 2Φ)(1−

2Φ)3)1/2 ≃ a3(1− 2Φ), we have

−3H(1− 2Φ)∂0ϕ− (1− 2Φ)∂20ϕ+ (1 + 2Φ)
∇2ϕ

a
= m2ϕ , (3.5)

where H = ȧ/a.

We are studying a Bose system with very high occupation number in phase space, so we can approximate
it using a single wave function describing a classical field, since all interactions besides gravity can be
neglected. Quantum corrections are expected to be completely negligible, since

δϕ̂ ∼ 1√
N

(3.6)

(in other words, we are assuming the validity of mean field theory, where the mean values of operators are
large compared to the root variance around those values due to quantum corrections, this root variance
going as ∼ 1/

√
N ).

Also, we want to discuss the Non Relativistic (NR) limit, so it will be useful to decompose the field as

ϕ =
1√
2m

(
ψe−imt + ψ∗eimt

)
; (3.7)

ψ is a complex scalar field, with the dimensions of a mass square (since the real scalar field ϕ must have
the dimensions of a mass). Put the previous in (3.5), neglect terms exploiting the NR limit condition
|ψ̇| ≪ m|ψ|, and obtain the Schrödinger-like equation

i∂0ψ +
3

2
iHψ = − ∇2ψ

2ma2
+mΦψ . (3.8)

In the following, since we are discussing galactic dynamics (length scale ∼ 10 kpc), we can safely neglect
the Hubble term and universe expansion effects, so we will set a = 1 and H = 0.

To obtain the equation for the gravitational potential, we can use the 00 Einstein equation in the weak
field limit:

∇2Φ = 4πGT00 ; (3.9)
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the energy momentum tensor reads

Tµν = − 2√
−g

δS

δgµν
= ∂µϕ∂νϕ− gµν

(
1

2
gγδ∂γϕ∂δϕ+

1

2
m2ϕ2

)
, (3.10)

so T00 = |ψ|2 in the NR limit.

In the end, we end up with the Schrödinger-Poisson equations

i∂0ψ = −∇2ψ

2m
+mΦψ , (3.11)

∇2Φ = 4πG(|ψ|2 −
〈
|ψ|2

〉
) . (3.12)

4 Features of ULDM
Cores The ground state solution of the Schrödinger-Poisson equations is a cored solution. To see this,
decompose

ψ(x⃗, t) =
mMpl√

4π
e−iγmtχ(x⃗) , (4.1)

where γ is an eigenvalue of the problem. Assume spherical symmetry and define the adimensional radius
x := rm, then the Schrödinger-Poisson equations become

∂2xχ+
2

x
∂xχ = 2(Φ− γ)χ , (4.2)

∂2xΦ+
2

x
∂xΦ = χ2 . (4.3)

The ground energy state solution (called also soliton) correspond to the one with no nodes; it is possible
to easily solve these equations numerically, by assuming χ(0) = λ2s as initial condition, together, for
consistence with the form of the equations, with ∂xχ = ∂xΦ = 0; the initial condition for Φ(0) can be
found by selecting the value that allows for a no-node solution with χ(x→ ∞) → 0, whereas γ is fixed by
imposing Φ(x→ ∞) → 0. Numerical calculations show that, for λ2s = 1, γ1 ≃ −0.69, where the subscript
1 indicates the solution corresponding to the initial condition λ2s = 1. It is easy to see that, for a generic
λs, the solutions scale as

χλs
(x) = λ2sχ1(λsx) , (4.4)

Φλs(x) = λ2sΦ1(λsx) , (4.5)

γλs
= λ2sγ1 ; (4.6)

in particular, defining the mass of the χ1 soliton as

M1 =

∫
d3r |ψ2| =

M2
pl

m

∫ ∞

0

dxx2χ2
1(x) ≃ 2.79× 1010

( m

10−20eV

)−1

M⊙ (4.7)

and the core radius as as the one where the mass density drops by half, yielding

rc1 ≃ 8.2× 10−5
( m

10−20 eV

)−1

pc , (4.8)

we have Mλ = λsM1, rcλ = λ−1
s rc1, so their product is independent of λs, and yields

Mλrcλ ≃ 2.27× 106
( m

10−20 eV

)−2

kpcM⊙ , (4.9)

Exploiting equation (4.7), we can write

λs ≃ 3.6× 10−2
( m

10−20 eV

)( Mλ

109M⊙

)
(4.10)

It can be useful to write down an analytic approximation for the soliton density. It is

ρλ(r) =

190

(
10−20 eV

m

)2(
10 pc

rcλ

)4

(
1 + 0.091

(
r

rcλ

)2
)8 M⊙pc−3 . (4.11)
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Figure 1: An example of an ULDM simulation from Schive, Chiueh, and Broadhurst 2014. Both the
formation of cores and the interference behaviour coming from the wave nature of ULDM are apparent.

The energy can be computed as, with x′ := mλsr

Eλs
=
m2M2

PL
4π

λ6s

∫
d3x′

m3λ3s

(
1

2

∣∣∇′χ1(x
′)
∣∣2 + Φ1(x

′)|χ1|2(x′)
2

)

=⇒ Eλs = λ3sE1 =
λ3s
3
γ1M1 ,

(4.12)

(to understand this expression, recall that in (3.7) we factored out a mass term, giving ψ the dimensions
of a mass squared, and that the gravitational potential is a n-body interaction one, hence the factor 2 at
the denominator in the potential term); the last equality is obtained using the virial theorem, Ep = −2Ek,
valid for the stationary Schrödinger-Poisson.

Fluctuating density field The validity of the wave description implies that the density field itself
experiences wave phenomena like interference. In general, a wavefunctions can be expressed as a super-
position of eigenmodes (we can take aj to be real)

ψ(x⃗, t) =
∑
j

ajψj(x⃗)e
iφje−iωjt =⇒ ρ(x⃗) = |ψ|2 =

∑
j

|aj |2|ψj(x⃗)|2 +
∑
j ̸=k

ajakψjψ
∗
ke

i(φj−φk)e−it(ωj−ωk) ,

(4.13)
where the first term is the average density, and the last term is the interference term. The formation of
cores and this typical interference pattern are seen in simulations, see e.g. Fig. 1.

“Quantum pressure” and small scales suppression We can recast the Schrödinger-Poisson as
continuity and Euler equation from fluid dynamics, using the so-called Madelung formulation

ψ =

√
ρ

m
eiθ , v⃗ =

1

m
∇θ =

1

2m|ψ|2i
(ψ∗

i ∇ψi − ψi∇ψ∗
i ) , (4.14)

to obtain

∂tρ+∇ · (ρv⃗) = 0 , (4.15)

∂tv⃗ + (v⃗ ·∇)v⃗ = −∇Φ+
1

2m2
∇
(
∇2√ρ
√
ρ

)
. (4.16)

Such a formulation does not describe vortices, which are configurations where the density vanishes in one
point (where the Madelung formulation Eq. (4.14) loses its meaning).

Notice that Eqs.(4.15)(4.16) are completely classical, and that we can loosely identify, in analogy with
how the Euler equation looks like,

1

2m2

∇2√ρ
√
ρ

∼ Pquantum , (4.17)
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Figure 2: Example of small scale suppression power expected from ULDM, from Ferreira 2021

which is usually called quantum pressure. This is unfortunately a misnomer on multiple levels. One, as
we remarked, the equations are classical, so there is no real quantum behaviour. Second, it is not really
a pressure, since it does not come from the isotropic part of the Tij tensor. Nevertheless, this name
gives intuition on its effects: it acts like an outward pressure, which slows down gravitational collapse,
and whose origin can be traced back on the uncertainty principle (I cannot squish too much matter in a
small volume: the more I do, the more the position of particles becomes precise, and hence the more the
velocity dispersion has to increase).

To understand at least qualitatively this effect of resistance to gravitational collapse (which will end up
in small scales power spectrum suppression), we can consider to expand Eqs.(4.15)(4.16) in ρ = ρ̄(1+ δ),
with |δ| ≪ 1, and |v⃗| ≪ 1. At first order in δ and v⃗, we have

˙⃗v = −∇Φ+
1

2m2
∇∇2δ

2
, δ̇ +∇v = 0 ; (4.18)

taking the derivative of the latter and using the former, together with the Poisson equation1

∇2Φ = 4πGρ̄δ , (4.19)

we have
δ̈ − 4πGρ̄δ +

1

4m2
∇4δ = 0 . (4.20)

The previous is solved by
δ = A1e

i(ωt−k⃗·x⃗) +A2e
−i(ωt−k⃗·x⃗) , (4.21)

with
ω2 =

1

4m2
k4 − 4πGρ̄ ; (4.22)

this defines the so called Jeans scale

kJ = (16πGρ̄)1/4m1/2 . (4.23)

On perturbations with scales k < kJ, gravity dominates, ω is imaginary and we have a exponentially
increasing mode (gravitational collapse), whereas for scales k > kJ, quantum pressure dominates, the
solutions in Eq. (4.21) are just waves, and collapse is halted.

Fig. 2 shows this small scales suppression effect for different ULDM masses. This effect is an example of
an ULDM feature which allows us to set constraints on m. In particular, m > 1 × 10−22 eV if ULDM
comprises the whole DM content of the universe.

1The Newtonian potential Φ is sourced only by the fluctuations. The mean density ρ̄ sources the expansion of the
universe (in Friedmann equations).
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