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1 Introduction
In this tutorial we will introduce the Bloch equation, which deals with the spin precession properties
of a particle (in applications, typically a nucleus) in the presence of magnetic field(s). The important
application of the Bloch equation is in the Nuclear Magnetic Resonance (NMR). The Bloch equation can
be (sort of) derived using the density matrix formalism, approximating the system of interest as a two
energy level system.

How justified is such an approximation? We know that quantum systems interact continuously with the
environment, plus one should take into account “unwanted” interactions with the detector as well. This
mess makes such that the density matrix of the whole system becomes very complicated, in particular it
lives on a possibly enormous Hilbert space. Even if experimentalists try their best to prepare a pure state,
when one deals with almost degenerate energy levels, mixing is basically unavoidable. Assuming we can
treat a system as a two energy level system means that we are basically considering a two dimensional
Hilbert space, hence greatly simplifying the problem. This works when the dynamics which populate
these levels is to a good approximation decoupled from the rest of the Hilbert space.

The prime example where such an approximation is used (and works) is the case of a spin 1/2 particle
in a magnetic field B⃗: due to the spin, the system has two close energy levels, the one where the spin is
aligned with B⃗, and the one where the spin direction is opposite with respect to B⃗. The density matrix of
such a system can be decomposed as ρ(r⃗, s, r⃗′, s′) ≃ ρ(r⃗, r⃗′)ρ(s, s′). ρ(s, s′) is a 2 by 2 matrix (for a spin
n particle we have 2n+ 1 possible independent z components for example), which describes the possible
two orientations of the spin plus mixing (the non-diagonal terms).

Having this example in mind, we will first build the formalism which will allow us to describe 2 by 2
matrices in this context, to then move towards the Bloch equation and some comments regarding NMR.

Most of this tutorial is based on Shimon’s lecture notes, chapter 5, section 5.

2 Pauli matrices
We need a convenient 2 by 2 matrix base to describe 2 by 2 density matrices; recalling that the density
matrix is hermitian, it makes sense to look for an hermitian base as well (so that the coefficients of a
density matrix expansion in this base are all real). The set which makes the job done is the following:

1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.1)

then, any density matrix ρ can be expanded as

ρ = ρ01 +

3∑
i=1

ρiσi , (2.2)

where ρµ, µ = 0, . . . , 3 are the real coefficients of the expansion. The matrices σi, i = 1, 2, 3, are the so
called Pauli matrices. They are very important, since the description of a spin 1/2 particle uses them
extensively. Also for this reason, it is worth stopping a little discussing their properties. The Pauli
matrices are:

• Hermitian, σ†
i = σi;
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• traceless, Tr(σi) = 0;

• they obey [σi, σj ] = 2iϵijkσk; notice that ϵijk are proportional to the su(2) algebra structure con-
stants (meaning the Pauli matrices are the generators of the SU(2) group);

• they obey {σi, σj} = 2δij1; this anticommutation relation is a “hint” of their usefulness in describing
spin 1/2 particles (which obey anticommutation relations);

• one can use the previous two properties to find σiσj = ([σi, σj ] + {σi, σj})/2 = δij1 + iϵijkσk.

Notice that one can extract coefficients of ρ in Eq. (2.2) via traces (recall Tr(ρ) = 1),

ρ0 =
1

2
Tr(1ρ) =

1

2
, ρi =

1

2
Tr(σiρ) . (2.3)

Notice that, using Eq. (2.3), we can write (Greek letter here denote the matrix indices, and sum over
mute indices is implied)

(ρ01+ρiσi)γδ =: ργδ =
1

2
ρβαδαβδγδ+

1

2
ρβασ

αβ
i σγδ

i = ρβαδβγδαδ =⇒ δαβδγδ+σαβ
i σγδ

i = 2δβγδαδ , (2.4)

which is a completeness relation.

The previous properties are what define Pauli matrices. One can ask: are there other matrices which
respect those properies? In other words, are there other representations of the Pauli matrices? The
answer is yes. Consider an unitary matrix U ; then the transformed set

σ′
i = UσiU

† , (2.5)

satisfies all the previous properties for every U . It turns out that we can give a nice interpretation of
such a transformation. Notice that {σi} is a base for the space of traceless matrices. So we can expand

UσiU
† =

∑
i

Aijσj , Aik =
1

2
Tr

(
σkUσiU

†) . (2.6)

The matrices Aij are 3 by 3 matrices, and one can show that they are orthogonal, using Eq. (2.4). In
fact

AikAjk =
1

4
Tr

(
σkUσiU

†)Tr(σkUσjU
†) = 1

4
σαβ
k Uβγσγδ

i U†δασϵη
k Uηθσθµ

j U†µϵ

=
1

2

(
δαηδβϵ −

1

2
δαβδϵη

)
Uβγσγδ

i U†δαUηθσθµ
j U†µϵ =

1

2
Tr

(
σ′
iσ

′
j

)
= δij ,

(2.7)

and similar for AkiAkj = δij . This means that Aik matrices belong to O(3), the group of 3D rotations.
Notice

ρ− 1

2
1 = ρiσi = ρ′iσ

′
i = ρ′iAijσj =⇒ ρi = Aijρ

′
j , (2.8)

i.e. the components ρi transform as a 3D ordinary vector under this unitary transformation of Pauli
matrices. All this illustrates the connection between the SU(2) and O(3) group. The matrices Aik form
the so called adjoint representation of SU(2). The concept of the adjoint representation of a group will
return back especially when you will study particle physics.

3 The Bloch sphere
Let’s return back to our two energy level system; we now know that we can represent it as

ρ =
1

2
(1 + P⃗ · σ⃗) , (3.1)

where P⃗ is called polarization vector; the reason of this name will become clear soon (for those of you
that are not familiar with this notation, P⃗ · σ⃗ = Piσi, Pi are numbers whereas σi are matrices, hence Piσi

is a matrix). P :=
∣∣∣P⃗ ∣∣∣ determines the eigenvalues of the density matrix; to find them, notice that n⃗ · σ⃗,

with n⃗ := P⃗ /P , commutes with ρ, hence they have the same eigenstates (one can see n⃗ as the “direction
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in Pauli matrices space” of the polarization); also, since it is always possible to find an unitary matrix
such that n⃗ · σ⃗ = Uσ3U

† (rotation in Pauli matrix space, as we have seen in the previous section); hence,
σ3 and n⃗ · σ⃗ have the same eigenvalues (this is equivalent to diagonalization, which does not change the
eigenvalues;), hence

λ± =
1

2
(1± P ) . (3.2)

Notice that, if P = 1, Tr
(
ρ2
)
= (1+P 2)/2 = 1, hence it is a pure state; conversely, the state with P = 0

is the maximally mixed state (the two levels have the same weight, hence there is no information). One
can see this also by looking at the related entropy in the case P = 0

S = −
∑
i

λi lnλi = ln 2 = lnN , (3.3)

where N is the number of possible configurations of the sytem. This is typical to systems with no
information, or maximal entropy.

This suggests to represent the states as lying in a sphere of unitary radius. The center of the sphere,
P = 0, is the maximally mixed state, whereas the surface of the sphere, states with P = 1, are the pure
states. States inside the sphere are mixed states. Such a representation is called Bloch sphere.

4 Dynamical Bloch equation
Recall that the density matrix obeys the equation

dρ

dt
=

i

ℏ
[ρ,H] =⇒ dPi

dt
=

d

dt

(
1

2
Tr(σiρ)

)
=

i

2ℏ
Tr(σiPk[σk, H]) ; (4.1)

exploiting
Tr(σi[σk, H]) = Tr([σi, σk]H) + Tr(σkσiH − σiHσk)︸ ︷︷ ︸

=0

= 2iϵikl Tr(Hσl) , (4.2)

we end up with
dP⃗

dt
= −1

ℏ
P⃗ × Tr(Hσ⃗) . (4.3)

Let’s specialize our discussion for a spin 1/2 particle in a magnetic field; the Hamiltonian reads

H = −µ⃗ · B⃗ , µ⃗ =
1

2
ℏgσ⃗ , (4.4)

therefore
dP⃗

dt
= gP⃗ × B⃗ , (4.5)

which is the equation of the polarizaton vector which precesses around the magnetic field.

We can take into account the effect of the environment by means of the relaxation time approach; for a
system in a thermal bath characterized by the temperature T , the equilibrium state is

ρ0 =
e−H/T

Tr
(
e−H/T

) . (4.6)

To have an explicit expression, notice that, with e⃗ as a unit vector,

(e⃗ · σ⃗)2 = eiejσiσj = eiej(δij + iϵijkσk) = 1 = (e⃗ · σ⃗)2p , (e⃗ · σ⃗)2p+1 = e⃗ · σ⃗ ; (4.7)

This means that we can split the sum on the Taylor expansion for the exponential as (B⃗ =: Be⃗)

exp

(
ℏgB
2T

e⃗ · σ⃗
)

=: exp(αe⃗ · σ⃗) = 1
∑

k=even

αk

k!
+

B⃗ · σ⃗
B

∑
k=odd

αk

k!
=

eα + e−α

2
1 +

eα − e−α

2

B⃗ · σ⃗
B

; (4.8)

the trace of the previous is simply eα + e−α, thus ending up in

ρ0 =
1

2
1 +

B⃗ · σ⃗
B

tanh
gℏB
2T

. (4.9)
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An easy interpetation of ρ0 is the following: since limx→∞ tanh(x) = 1, when B ≫ T , the equilibrium
state is basically the state with polarization vector P⃗ aligned with B⃗; in the opposite limit, we are
close to the maximally mixed state (meaning that the temperature of the system is too high to give any
meaningful polarization).

Returning back to Eq. (4.5), we have

dP⃗

dt
= gP⃗ × B⃗ − P⃗ − P⃗0

τ
, P⃗0 =

B⃗

B
tanh

gℏB
2T

, (4.10)

which is (almost) the Bloch equation. A particle with spin polarization P⃗ will precess around B⃗ and, in
a time τ , it will relax to the equilibrium configuration given by P⃗0.

5 Nuclear magnetic resonance
The Bloch equation is applied in nuclear magnetic resonance; the setting is slightly more complicated
with respect to the one discussed above, since in NMR there are typically two magnetic fields acting on
a sample: a strong, static one and a time-dependent one, perpendicular to the previous. Eq. (4.10) can
be phenomenologically modified as

dP⃗

dt
= gP⃗ × (B⃗ + B⃗1(t))−

P⃗⊥

T2
−

P⃗∥ − P⃗0

T1
, (5.1)

where P⃗⊥(∥) is the component of the polarization vector perpendicular (parallel) to B⃗, and T2 is a
relaxation time related to the pulse given by B⃗1(t), where typically T2 < T1. Notice that P⃗0 is parallel
to B⃗ as well. This is the equation that Bloch proposed back in 1946.

In applications, the spin refers to the nuclear spins of nuclei in (possibly complicate) molecules (e.g.
spin of 1H, 13C, 15N). One can put a sample of an unknown molecule in these perpendicular magnetic
fields, together with a coil or something similar which will capture the current induced by the precession
of a certain nucleus. At first, the strong static magnetic field (order of few tesla) is turned on, hence
the randomly oriented nuclear spin will start precessing at a frequency given by the strength of B (the
Larmor frequency ω = gB, notice that g depends on the nucleus we are looking at); then, an impulse
(on radio frequencies, hence no ionizing radiation) of the perpendicular magnetic field (order µT) will
cause a further oscillation on the polarization vector (kicking them out of the alignment with the strong
static magnetic field). If this pulse has a frequency matching the Larmor frequency, the many precessing
nuclei become phase coherent, hence giving rise to a detectable signal; this phase coherence will die out
with time T2 (spin-spin relaxation, whereas T1 may be called spin-lattice relaxation, since it mostly deals
with exchange of the precessing spin energy with the environment, i.e. the lattice, until equilibrium is
reached). Both relaxation times depend on the properties of the nucleus in the molecule. In fact, different
nuclei will experience a different effective magnetic field, due to shielding or deshielding of neighboring
electrons (more electronegative groups will feel less effective magnetic field). NMR measures these pulses,
modulated by the two relaxation times, which will tell the experimentalist the molecule he has in his
sample (different resonant frequencies and different relaxation times can identify nuclei in a molecule).
Magnetic Resonance Imaging (MRI) is an example of a medical application of NMR (the contrast between
different tissues in MRI scans is given by the rate at which nuclei relax).

For the spin-lattice relaxation, we have (focusing on the relaxation alone)

P⃗∥ = P⃗0 − (P⃗0 − P⃗∥(0))e
−t/T1 , (5.2)

whereas for the spin-spin relaxation
P⃗∥ = P⃗⊥(0)e

−t/T2 . (5.3)
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Figure 1: Visualizing the effect of the two relaxation times.
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