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This tutorial is mostly based on Shimon’s notes, Section 4.3 of the Adiabatic theorem chapter, and Section
1.5 of [1606.06687].

1 Introduction: connection of Berry phase with gauge potentials
You studied during lectures the Berry phase as a physical phase, arising in the context of adiabatic
changes in the parameter space R⃗ of the Hamiltonian H({xi, pi}; R⃗), where {xi, pi} are the dynamical
variables of the system, whereas R⃗ are the parameters of the Hamiltonian (for example, a fixed, not
dynamical external magnetic field).

There are several connection of Berry phase with gauge potentials. Let’s first recall some quantities which
are useful in discussing the Berry phase. At first, the physical Berry phase reads

γ =

∮
C

Ai dRi , Ai = i
〈
ψ(R⃗)

∣∣∣ ∂

∂Ri

∣∣∣ψ(R⃗)〉 , (1.1)

where C is a closed contour in parameter space, ψ(R⃗) is the parameter-dependent wavefunction, and Ai

is called the connection, which is the analogous of a vector potential in gauge theories. To better see this
last point, notice that, under a overall phase change of the wavefunction, the connection changes,

ψ′ = eiχ(R⃗)ψ =⇒ A′
i = Ai + ∂iχ ; (1.2)

the analogy with the vector potential is apparent, and one can see the phase change of the wavefunction
as a gauge transformation. Physics should be invariant with respect to this gauge transformation, and
in fact it is possible to recast the Berry phase as depending on the curvature (analogous of the field
strength) Fij , by means of the generalized Stokes theorem

γ =

∫
S

Fij dSij , Fij =
∂Ai

∂Rj
− ∂Aj

∂Ri
, (1.3)

where S is a two-dimensional surface in the parameter space bounded by C. Notice that, in a 3D
parameter space (the one we will be interested in the following), we can write

γ =

∫
S

∇× A⃗ · dS⃗ , (1.4)

which is the (hopefully) familiar Stokes theorem.

2 Berry connection for a 2 level system
Let’s discuss the Berry phase in the context of a two level system; the hermitian Hamiltonian can
generically be written as

H =

(
H11 H12

H∗
12 H22

)
=

1

2
(H11 +H22)1 +

(
(H11 −H22)/2 H12

H∗
12 (H22 −H11)/2

)
=: H1 +H2 ; (2.1)

we will focus on H2, since it will have the same eigenstates and just shifted eigenvalues as the full H; in
fact

(H1 +H2) |λ⟩ = λ |λ⟩ =⇒ H2 |λ⟩ =
(
λ− 1

2
(H11 +H22)

)
|λ⟩ . (2.2)
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We will rewrite H2 as

H2 =:

(
Z X + iY

X − iY −Z

)
. (2.3)

Notice that H can be seen as the Hamiltonian of a spin 1/2 particle in a magnetic field, H ∼ B + B⃗ · σ⃗.
This is the physical system you can have in mind in the following, where R⃗ = {X,Y, Z} can be seen as
the cartesian components of an external magnetic field.

The eigenvalues of H2 are

det(H2 − E1) = 0 =⇒ E = ±
√
X2 + Y 2 + Z2 =: ±R , (2.4)

with eigenfunctions, for E = R (ψ = (ψ1, ψ2))

(H2 − E1)ψ = 0 =⇒ (Z −R)ψ1 + (X + iY )ψ2 = 0 =⇒ ψ1 =
X + iY

R− Z
ψ2 ; (2.5)

imposing |ψ|2 = 1, we have

1 = |ψ2|2
(
X2 + Y 2 +R2 + Z2 − 2RZ

(R− Z)2

)
= |ψ2|2

2R

R− Z
, (2.6)

so, up to an arbitrary phase (i.e. an analogous of gauge transform), we have

ψ2 =

√
R− Z

2R
=

√
1

2
(1− cos θ) = sin

θ

2
, (2.7)

where we used spherical coordinates R⃗ = R(sin θ cosϕ, sin θ sinϕ, cos θ) (and recall cos θ = 1−2 sin2(θ/2)).
Similarly,

ψ1 =
X + iY

R− Z

√
R− Z

2R
=

sin θeiϕ√
2(1− cos θ)

= cos
θ

2
eiϕ . (2.8)

For illustration purposes, let’s consider two phase choices, χ = 0 and χ = −ϕ; we then deal with the
eigenfunctions

ψ+ =

(
cos(θ/2)eiϕ

sin θ/2

)
, ψ− =

(
cos θ/2

sin(θ/2)e−iϕ

)
, (2.9)

for the first and second phase choice respectively. The Berry connection then reads

A⃗±(R⃗) = i ⟨ψ±|∇R⃗|ψ±⟩ ; (2.10)

in spherical coordinates,

∇R⃗ = êR
∂

∂R
+
êθ
R

∂

∂θ
+

êθ
R sin θ

∂

∂ϕ
, (2.11)

so

∇R⃗ψ+ =
êθ
2R

(
− sin(θ/2)eiϕ

cos θ/2

)
+
êϕie

iϕ cos θ/2

R sin θ

(
1
0

)
, ∇R⃗ψ− =

êθ
2R

(
− sin θ/2

cos(θ/2)e−iϕ

)
− êϕie

−iϕ sin θ/2

R sin θ

(
0
1

)
.

(2.12)

The connection then reads
A± = −êϕ

±1 + cos θ

2R sin θ
; (2.13)

notice that the two connections are related by

∇χ = êϕ
1

R sin θ
, (2.14)

as it should.
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A THE DIRAC STRING

3 A magnetic monopole?
We can compute the Berry curvature

∇× A⃗± =
êR

R sin θ

∂

∂θ
(sin θA± ,ϕ) =

êR
2R2

, (3.1)

with the connection of A as a vector potential of a “magnetic field in parameter space”, we see that
we obtain like a monopole sitting at the origin. Notice that the origin is the point of energy level
crossing (since there the two energy levels are degenerate); due to this, one cannot apply our Berry phase
computations on that part of the parameter space (which is a singularity). However, the mere presence
of the singularity has effects outside the singularity itself, where the adiabatic theorem can be applied.

In particular, notice that Eq. (3.1) is the analogous of a magnetic monopole in parameter space, and it
is independent from the gauge choice.

This magnetic monopole sitting at the center is what dictates the physics of the Berry phase in this
system. To this magnetic monopole, we can assign the charge

4πg :=

∫
S

êR
2R2

· dS⃗ = 2π =⇒ ∇× A⃗± = g
êR
R2

, (3.2)

where S is a sphere around the monopole, and g = 1/2.

We can connect the existence of this Berry magnetic monopole with a condition on the quantization of the
Berry curvature flux, similar to how the presence of a electromagnetic magnetic monopole could explain
the quantization of charge. In fact, from (1.3), by considering a path C lying on the X − Y plane, we
have two (classes of) possible surface choices we can decide to do the computation with: one encircling
the monopole from north, which we call S+, one from south, which we call S−; then∫

S+

êR
2R2

· dS⃗ = gΩ , (3.3)

where Ω is the solid angle corresponding to S+, whereas∫
S−

êR
2R2

· dS⃗ = −g(4π − Ω) , (3.4)

where we took into account the different orientation of the surface. Notice that the two computations
give the same phase factor modulo 2π only if 2g ∈ Z.

We can write this quantization condition (which ensures that physics does not depend on my choice of
surface, as it should) as ∫

S

Fij dSij = 2πC , (3.5)

where C is called the Chern number, which labels different topological phases of the system.

4 Connections with Aharonov-Bohm flux
The previous discussion suggests a connection with the Aharonov-Bohm (AB) flux. We noticed that
Ai(R⃗) behaves as the vector potential Ai(x⃗). With the analogy Ai → Ai, Ri → xi, we have that the AB
phase

γ → qΦ

ℏ
= 2π

Φ

Φ0
= 2πC ; (4.1)

we see the Chern number entering here as well, which tells us that physics is unchanged if the AB flux is
a multiple of Φ0.

A The Dirac string
The attentive reader might have noticed that, in Eq. (3.1), there is associated a Dirac string. Notice
in fact that A+ is singular for θ → 0; this corresponds to a branch cut in the positive z axis. This, as
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you saw in the electromagnetic magnetic monopole lectures, can be called Dirac string. Instead, A− is
singular for θ → π; this corresponds to a branch cut in the negative z axis. One can conclude that the
orientation of the Dirac string is gauge dependent. This is not something harmful, since the Dirac string
is not an observable.

We can euristically recover the magnetic field associated to the Dirac string (for more careful approaches,
see [1810.13403]). Let’s tentatively model the singularities arising in the curl computation as delta
functions,

∇× A⃗± =
êR
2R2

+Kδ(X)δ(Y )Θ(±Z)Ẑ ; (A.1)

The divergence of the previous gives

0 = 2πδ(R⃗) +Kδ(X)δ(Y )Ẑ
∂Θ(±Z)
∂Z

= 2πδ(R⃗)±Kδ(R⃗) =⇒ K = ∓2π , (A.2)

hence giving

∇× A⃗± =
êR
2R2

∓ 2πδ(X)δ(Y )Θ(±Z)Ẑ . (A.3)

Notice that the Dirac string makes such that the divergence of the curvature is zero everywhere, origin
included. The effect of the Dirac string is unobservable granted that Eq. (3.5) holds (notice the strict
parallelism with Dirac quantization argument and the Aharonov-Bohm effect; in fact, the string effect
can be seen as the solenoid in Aharonov-Bohm, and if the AB flux is a multiple of Φ0, then the string is
unobservable. This condition is easily seen to correspond to Eq. (3.5) in the context of Berry phase).
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