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Abstract
We used pseudo-spectral methods to solve an extension to 2D Navier-Stokes equations that uses

a piecewise constant viscosity (PCV) to model the forcing due to active agents [1]. This PCV model

allows one to regulate more precisely the strength and range of forced wavenumbers. This model

shows a phase transition to the formation of vortices at the largest length scale. Also we tried an

intermittent pattern forming analysis and characterize the range of the parameters for which this

can happen in our model.
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FIG. I.1: Remarkable demonstration of polar order in a sardine school.

I. ACTIVE FLUIDS

An active fluid [2] is a densely packed soft material whose constituent elements can self-

propel. Examples include dense suspensions of bacteria, microtubule networks or artificial

swimmers (see figures I.2 and I.1).

The interaction of active particles with each other, and with the medium they live in,

gives rise to highly correlated collective motion and mechanical stress. A distinctive, indeed,

defining feature of active systems compared to more familiar nonequilibrium systems is the

fact that the energy input that drives the system out of equilibrium is local, for example, at

the level of each particle, rather than at the system’s boundaries as in a shear flow.

To model active fluids, one needs to solve an extended version of Navier-Stokes equations,

so in next section we describe our implementation for numerically solve 2D Navier-Stokes

equations.

II. SOLVING NUMERICALLY NAVIER STOKES

We used ω- ψ formalism, so from the incompressible Navier Stokes,

∂u

∂t
+ u · ∇u = −∇P

ρ
+ ν∇2u , (II.1)

apply the curl on both sides to reduce to an equation for the vorticity ω =∇×u (recalling

that for incompressible flows ∇ · u = 0)

∂ω

∂t
+ (∇ui)× ∂iu + ui∂iω = ν∇2ω . (II.2)
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FIG. I.2: Bacterial “turbulence” in a sessile drop of Bacillus sub-tilis viewed from below through

the bottom of a petri dish. Gravity is perpendicular to the plane of the picture, and the

horizontal white line near the top is the air-water-plastic contact line. The central fuzziness is due

to collective motion. The scale bar is 35 µm.

In 2 dimensions, one has that the curl is defined as

∇× (uxx̂ + uyŷ) ≡ (∂xuy − ∂yux)ẑ . (II.3)

We can consider the vorticity as a scalar function (I need only one scalar component to fully

describe it) and also we have

(∇ui)× ∂iu = (∇ · u)(∇× u) = 0 , (II.4)

where on the last step we used incompressibility. So the final equation is

∂tω + ∂yψ∂xω − ∂xψ∂yω = ν∇2ω , (II.5)

where we have used the so called stream function

∂ψ

∂y
= ux ,

∂ψ

∂x
= −uy =⇒ ω = −∇2ψ . (II.6)

In Fourier space this becomes

∂tω̂ = −i(kxûxω + kyûyω)− νk2ω̂ , ψ̂ = ω̂/k2 . (II.7)

To treat numerically the non linearity, we can use pseudo spectral methods. The idea is to

solve the spatial part of the equation in Fourier space trying to avoid to directly Fourier
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transform the non-linear term (which would involve a convolution, a heavy process from the

computational point of view) but rather perform the multiplication in real space. Then the

time evolution is performed numerically. In formulas, calling N ≡ −i(kxûxω + kyûyω) the

non linearity and denoting the Fourier transform operator with F ,

N̂ = −ikxF(F−1(ûx) · F−1(ω̂))− ikyF(F−1(ûy) · F−1(ω̂)) . (II.8)

Going back and forth from real space to the Fourier one is way better than doing the

convolution since fast Fourier transform algorithms (FFT) can perform the Fourier transform

in O(N logN) steps rather than O(N2).

Since the problem in Navier-Stokes is only the non linearity, we can implement the inte-

grating factor method to exactly solve the linear part and applying numerical methods for

the non linear part, so write

∂t(e
νk2tω̂) = eνk

2tN̂ , (II.9)

such that the exact linear solution is encoded on the exponential factor. Then apply explicit

second order Runge-Kutta to evolve it in time,

ω̂∗ =e−νk
2δt/2

(
ω̂(t) + 0.5δtN̂(ω̂(t))

)
,

ω̂(t+ δt) =e−νk
2δt/2

(
e−νk

2δt/2ω̂(t) + δtN̂(ω̂∗)
)
.

(II.10)

III. ACTIVE SUSPENSIONS

An active suspension is, roughly speaking, a passive fluid medium that contains at least

one “micro-swimmer” species capable of converting chemical into kinetic energy. If the

swimmer concentration is sufficiently high, their collective dynamics can induce rich non-

equilibrium flow patterns in the ambient fluid. In dense bacterial suspensions, the mean

bacterial velocity field u(t, x), can be approximately decomposed in the form

u(t, x) = v + v0P ,

where v is the underlying solvent velocity field and P denotes the local mean orientation

of the bacteria. The parameter v0 is the typical bacterial self-swimming speed relative to

the solvent flow (in general, v0 is also a fluctuating quantity). Aiming to develop a sim-

plified phenomenological framework for the future mathematical description of rheological

measurements, we will focus here on the complementary problem of constructing effective

models for the solvent velocity field.
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IV. PCV MODEL

A typical extension to Navier-Stokes equations [3] is

∂tu + (u · ∇)u +∇P =∇ · σ , (IV.1)

with

σij = (Γ0 − Γ2∇2 + Γ4(∇2)2)(∂iuj + ∂jui) . (IV.2)

The action of the modified stress tensor σij can be resumed in an effective viscosity coefficient

∂tû + F((u · ∇)u)− ikP̂ = −k2νeff(k)û .

To model more precisely the forcing of wave numbers due to bacteria, introduce a piece-

wise constant viscosity (PCV) [1]:

ν̂(k) =


ν0 > 0 for k < kmin ,

ν1 < 0 for kmin ≤ k ≤ kmax ,

ν2 > 0 for k > kmax ;

so that the equation to solve is

∂tω̂ − N̂ = −ν̂(k)k2ω̂ .

In figure IV.1, we put the plots of νeff for the generalized Navier-Stokes model and PCV

model. In the various colors, we represented:

• Effective viscosity: ν̂eff(k) = Γ0 + Γ2k
2 + Γ4k

4 ;

• Γ0: kinematic viscosity;

• Γ2 < 0: determines both strength and range of forced wave numbers;

• Γ4 > 0: damping of large k modes by hyperviscosity.

To numerically solve it, we used the same method we described for Navier-Stokes equa-

tions.

We managed to reproduce the main results of [1], that is the transition to small scale

structure turbulence regime to large vortices regime, see figure IV.2; this was helpful in

trying to validate our code.
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FIG. IV.1: On the left, the behavior of νeffk
2 for the generalized Navier-Stokes model and on

the left the same for the PCV model.
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FIG. IV.2: On the left, energy dispersion relation for three different values of |ν1/ν0|; on the

right, we see the transition from small scale structure formation to large scale ones at a value of

|ν1/ν0| = 2.3.

A. Technical details

a. Stability. Since we used an explicit method, we had to use an adaptive time step

using Courant-Friedrichs-Lewy (CFL) time condition, that is

δt =
∆x

umax
=

L

Numax
, (IV.3)

6



N ν0 ν1/ν0 ν2/ν0 kmin kmax

256 10−4 -0.25-(-7.0) 10 33 40

TABLE IV.1: Parameters used in our analysis.

where L is the length of the grid, N the grid spacing and umax the modulus of the maximum

velocity.

b. Aliasing. As noted in [4], in order to prevent aliasing we put the modes with k ≥

2kmax/3 to zero always before a non-linear evaluation.

B. Scaling relations

We saw that scaling ν(k) does not change the pattern followed by the solution u; in fact,

non dimensionalizing our Navier Stokes equation extension using

u = Uu′ , x = Lx′ =⇒ t =
L

U
t′ , k =

1

L
k′ , ω =

U

L
ω′ , (IV.4)

we have

∂t′ω̂′ − N̂ ′ = −
ν̂(k)

UL
k′2ω̂′ , (IV.5)

where on the RHS we have the Reynolds number Re = UL/ν̂(k). Since the space grid is

never changed in our simulations, we expect that the only variable upon scaling of ν is the

typical velocity; increasing the viscosity means that the velocity is greater, and if indeed we

have that

ν → λν =⇒ u→ λu , (IV.6)

we can conclude that the Reynolds number remains the same, meaning indeed that the

pattern of the fluids with according scaled variables is the same if (IV.6) holds.

In the end we thus fixed a scale for ν by fixing ν0 and analyzed the range of parameters

resumed in table IV.1 (the only free parameter is then ν1).

V. INTERMITTENT PATTERN ANALYSIS

We tried to see and analyze intermittent pattern forming, that is pattern formation

arising when forcing only one mode. In general, patterns initially form but then, due to non
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linearities, the pattern changes [5].

In figure V.1, we see the various patterns forming for different forcing wavenumbers; we

see that the magnitude of k sets the scale of patterns, and also we see that a same pattern

can appear for different values of k. The interesting thing is that different patterns can form

and disrupt during the same simulation.

In figure V.2, we see what characterize a pattern-forming system.

In figure V.3, we can see how one can easily build a criterion for distinguishing pattern

forming systems from non-pattern forming one by looking at the behavior of E(k).

In figure V.4 we present the main result of our work, that is the parameter range where

you have intermittent pattern forming systems (which are the ones with the higher Eforcing/E

ratio).

VI. CONCLUSIONS

PCV model enables an easy control of forcing/dissipation, so that one can have a large

spanning of possible models with control of few parameters. We exploited the PCV fea-

tures to study of intermitting pattern states, since we can have a direct control of forced

wavenumbers.

Future works in this respect can include a more in depth analysis of parameters giving

intermittent patterns and a statistical analysis of appearance of specific patterns.

The python code used for this work is available here.
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FIG. V.1: Snapshots of different patterns corresponding to different forcing scales.
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FIG. V.2: Plots characterizing pattern forming systems.

FIG. V.3: Example of pattern forming system on the right and a not pattern forming one on the

left.
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FIG. V.4: Intermittent pattern phase diagram.
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