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1 INTRODUCTION

1 Introduction
The path integral approach and renormalization group equations are mostly known

in the quantum field theory setting. Here we will try to show how all the apparatus
of perturbation theory and even Feynman diagrams can be used to solve problems of
cosmological relevance. In particular, we will show how one can reorganize cosmological
perturbation theory in order to compute quantities like the propagator (that is the two
point correlator between density or velocity field fluctuations at different times) and the
power spectrum beyond linear theory with a non perturbative approach, by exploiting
renormalization group techniques. This if of great relevance since for example we can
use it to probe the BAO (Barionic Acoustic Oscillations) region, which involves density
fluctuations that are highly non-linear, as showed in [5].

In section 2 we will briefly review the derivation of the main equations we want to
solve (continuity and Euler equations) obtained by the Vlasov equation in the single
stream approximation; in section 3 we will reorganize these two formulas in a way such
that standard instruments of perturbation theory and (classical) path integral (see
[6]) can be applied to our case ([1] and [5]); in section 4 we indeed develop the path
integral approach (where we will also implement gaussian distributed initial conditions),
following mainly [5]; in section 5 we will appreciate how the new formalism we have
built can be used to cast classical perturbation theory in terms of Feynman diagrams
(we will follow [1]); in section 6, 7 we will instead see how to apply renormalization
group techniques to our problem at hand and in section 8 we will resume the main
results one can achieve with this approach [5]; finally in section 9 we will briefly see
how to extend our results in the case of different universes with respect to De Sitter
ones and how to implement initial conditions different from the gaussian ones ([4], [7]).

Regarding the notation we will use, since the formulas involved are quite lengthy,
we have introduced numerous short cuts, the most prominent one being the integration
over various momenta often being understood. This of course could lead to confusions,
but we tried to clarify the various formulas when confusion may arise by writing ex-
plicitly the various dependencies of the quantities of interest (something that often we
will omit when they can safely be understood from the context). All this in order not
to get lost in a notation nightmare and focus on the important concepts one wants to
convey.
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2 VLASOV EQUATION

2 Vlasov equation
Here we want to find the Vlasov equation corresponding to a system of self-gravitating

collisionless particles in a Robertson-Walker background (in non linear Newtonian ap-
proximation).

To derive it, we start with the lagrangian for a single particle of mass m

L =
1

2
mṙ2 −mϕ(x, t) ,

where x = r/a is the comoving radius (with a ≡ a(t) as the Robertson-Walker scale
factor), ˙≡ d/dt and ϕ(x, t) is the Newtonian gravitational potential satisfying

∇2
xϕ(x, t) = 4πGa2ρ(x, t) , (2.1)

where ρ(x, t) = ρb(t)(1 + δ(x, t)) is the energy density, which accounts for the back-
ground density ρb(t) and the fluctuations δ(x, t). Since if we change the lagrangian
adding a total time derivative we won’t change the equations of motion, we pass to

L′ = L − dψ

dt
, ψ =

1

2
maȧx2 ,

and the new lagrangian becomes (we drop the prime)

L =
1

2
ma2ẋ2 − m

2
aäx2 −mϕ =

1

2
ma2ẋ2 −mφ ,

where in the last step, with φ ≡ ϕ − ϕb, we exploited the second Friedmann equa-
tion (without the pressure term) and the expression for the background gravitational
potential (solution of (2.1) with ρ(x, t) = ρb(t)), respectively

ä = −4πG

3
aρb(t) ; ϕb =

2

3
πGρb(t)a

2x2 .

We are interested in the collisionless Boltzmann equation, so we need the hamilto-
nian

Ha = p · x− L =
p2

2ma2
+mφ ,

where we used
p =

∂L
∂x

= ma2ẋ .

The collisionless Boltzmann equation for the particle distribution function f(x,p, t) is

C[f ] = 0 =
∂f

∂t
+ ẋ · ∇xf + ṗ · df

dp
,

and using the Hamilton equations

ẋ =
∂Ha

∂p
=

p

ma2
,

ṗ = −∂Ha

∂x
= −m∇φ ,
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3 REORGANIZING EULER THEORY

we find the Vlasov equation

∂f

∂t
+

p

ma2
· ∇xf −m∇xφ ·

df

dp
= 0 (2.2)

Solving the non linear and non local Vlasov equation is not easy, so we consider its
first two moments:

ρ(x, t) =
m

a3

∫
d3p f(x,p, t) (zero moment)

v(x, t) =
N

ma

∫
d3ppf(x,p, t) =

1

a4ρ

∫
d3ppf(x,p, t) (first moment)

where in the first we divided by a3 since we are interested in the physical volume and
not the comoving one, and on the last N = (

∫
d3p f)−1 = m/a3ρ is a normalization

factor.
Now taking Vlasov equation, multiplying it by m and integrating over p we find,

with H = ȧ/a as the Hubble constant (in the following we won’t write explicitly all
the dependencies)

ρ̇+ 3Hρ+
1

a
∇x · (ρv) = 0 (2.3)

that is the continuity equation, whereas if again we multiply Vlasov by pi and integrate
over p we find (after some work)

∂vi

∂t
+Hvi +

1

a
vj
∂vi

∂xj
= −1

a

∂φ

∂xi
− 1

a

∂

∂xj
(
Πijρ

)
,

where at the end we have a second moment related quantity (that represents the
dispersion of velocity)

Πij =
〈pipj〉
m2a2

− vivj .

We see that an equation for the n-th moment contains also the n + 1-th moment. To
truncate this set of equations, we can assume for example that the Πij term is zero
(i.e. negligible velocity dispersion, this is the so called single stream approximation),
thus obtaining

∂v

∂t
+Hv +

1

a
(v · ∇)v = −1

a
∇φ , (2.4)

that is the Euler equation for a non static background.

3 Reorganizing Euler theory
We are interested in equations (2.3) and (2.4), which we rewrite as1

∂δ

∂τ
+∇ · ((1 + δ)v) = 0 , (Continuity eq.)

∂v

∂τ
+Hv + (v · ∇)v = −∇φ , (Euler eq.)

1In the following all space derivatives are taken with respect to the comoving coordinate x.
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3 REORGANIZING EULER THEORY

where we used the conformal time τ (defined through dt = a(τ)dτ) and the conformal
expansion rate H = d log a/dτ = aH (note that we can write H = d log a/dt); for
the first, we also used the third Friedmann equation (with no pressure term since
we’re discussing cold dark matter2) ρ̇b = −3Hρb, in this way we deal only with the
fluctuations δ. In the following we will restrict to an Einstein-de Sitter model for which
Ωm = 1 and ΩΛ = 0; we will see what happens when one renounces to these and other
assumptions in section 9. Note that exploiting this restriction and our definitions we
can rewrite the Poisson equation as

∇2φ =
3

2
H2δ . (3.1)

This holds since we have

∇2φ = ∇2(ϕ− ϕb) = 4πGa2(ρ− ρb) = 4πGa2ρbδ ,

and we can exploit the first Friedmann equation in the form

H2 =
8πG

3
a2ρb ,

yielding indeed (3.1).
Since we can assume the velocity field to be irrotational3, we can express the pre-

vious in terms of the divergence velocity θ(x, τ) = ∇ · v(x, τ); so passing also in
Fourier 3D space (we cannot extend the Fourier transform to time since we are not in
Minkowski) we rewrite the continuity equation as

∂δ(k, τ)

∂τ
+ θ(k, τ) +

∫
d3q d3p δD(k− q− p)α(q,p)θ(q, τ)δ(p, τ) = 0 , (3.2)

where we denoted with δD the Dirac delta function (in order not to make confusion
with density fluctuations), whereas from Euler equation, taking first its divergence, we
find

∂θ(k, τ)

∂τ
+Hθ(k, τ) +

3

2
H2δ(k, τ) +

∫
d3q d3p δD(k− q− p)β(q,p)θ(q, τ)θ(p, τ) = 0 .

(3.3)

The non linearity and non locality of Vlasov equation is encoded in the functions4

α(q,p) =
(p + q) · p

p2
, β(q,p) =

(p + q)2q · p
2q2p2

;

2Cold dark matter is by definition non-relativistic (at least from the time of its decoupling) so we
can safely put the pressure P = 0.

3A simple argument to justify this assumption is the following: using Helmoltz theorem, we can
split v = v‖ + v⊥, with ∇× v‖ = 0 and ∇ · v⊥ = 0; insert v⊥ in the linearized Euler equation (i.e.
without the advective term) without the source (since ∇φ, being irrotational, cannot contribute to
the divergenceless part of v ) and you find ∂v⊥/∂τ +Hv⊥ = 0 =⇒ v⊥ ∝ a−1, so the divergenceless
part of the velocity dies out with the expansion of the universe.

4For the details on these derivations, see appendix B.1.
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4 THE PATH INTEGRAL

in fact, setting to zero both α and β, we recover the results of standard cosmological
perturbations in the linearized Newtonian limit (see appendix B.2 for details).

We now reorganize (3.2) and (3.3); define first the doublet(
ϕ1(k, η)
ϕ2(k, η)

)
≡ e−η

(
δ(k, η)

−θ(k, η)/H

)
, (3.4)

where we used a new time variable η = log a/ain, with ain the scale factor taken at a
conveniently early time, when all the relevant scales are inside the linear regime (so little
values of η correspond to a situation where linear theory can safely be applied). Define
also the vertex functions (called in this way since they will represent the interaction in
the path integral point of view)

γ121(k,q,p) =
1

2
δD(k + q + p)α(q,p) ,

γ222(k,q,p) = δD(k + q + p)β(q,p) ,

γabc = 0 otherwise , a, b, c = 1, 2 ;

(3.5)

so the equations can be rewritten in the form

(δab∂η + Ωab)ϕb(k, η) = eη
∫

d3p d3q γabc(k,−q,−p)ϕb(p, η)ϕc(q, η) (3.6)

with
Ω =

(
1 −1
−3/2 3/2

)
(details on how to arrive at this are in appendix B.3).

We can immediately see the analogy with a field theory equation, where the term
δab∂η + Ωab can be seen in momentum space as the inverse of the free propagator,
whereas the right hand side corresponds to an interaction term.

4 The Path Integral
We now want to define an action giving the equation of motion (3.6); since a term

like ϕa∂ηϕa would vanish upon integration by parts, to define the action we need an
auxiliary field χa(k, η), a = 1, 2, whose physical meaning is associated to the initial
conditions as it will become clear later. So5

S[ϕ,χ] =

∫
dη (χa(−k, η)(δab∂η + Ωab)ϕb(k, η)

− eηγabc(k,−q,−p)χa(−k, η)ϕb(p, η)ϕc(q, η))

(4.1)

The variation of this action with respect to χa will straightforwardly yield the equation
of motion (3.6). The system is classical, so the path that solves the equation of motion

5Here is implied an integration over internal momenta when needed. We will use this shortcut
notation also in the following; this should not bring confusion as long as we make explicit the actual
dependencies on the left hand side. We will also often forget about writing the explicit dependencies
on momenta, with the exception on those cases where confusion may arise.
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4 THE PATH INTEGRAL

is unique; we call it ϕcl. But still we want a path integral representation of this classical
system, so we can use the functional Dirac delta and express the probability that the
configuration ϕ is in ϕ(ηf ) at a time ηf given that at η = 0 was at ϕ(0) as

P [ϕ(ηf ),ϕ(0)] = δD[ϕ(ηf )−ϕcl[ηf ,ϕ(0)]] , (4.2)

where we remarked the fact that ϕcl is completely specified by the initial conditions.
The corresponding path integral representation is (see appendix B.4)

P [ϕ(ηf );ϕ(0)] = N
∫
D′′ϕDχeiS , (4.3)

where D′′ϕ means that upon integration I keep ϕ fixed at the two extrema η = 0
and η = ηf . We finally define the generating functional by summing over the final
configurations ϕ(ηf ) and, since we want to implement now statistical initial conditions
(and not determined ones), averaging over the initial states as

Z[J,K;P 0] =

∫
Dϕ(0)Dϕ(ηf )D′′ϕDχW [ϕ(0), P 0] exp

(
i

∫ ηf

0

dη

× (χa(δab∂η + Ωab)ϕb − eηγabcχaϕbϕc + Ja(k, η)ϕa(k, η) +Ka(k, η)χa(k, η))

) (4.4)

where we have introduced the sources J(k, η),K(k, η) and the gaussian weight for the
initial configuration

W [ϕ(0), P 0] = exp

(
−1

2
ϕa(k, 0)

[
((P 0)−1)ab(k)

]
ϕb(−k, 0)

)
, (4.5)

with P 0 the power spectrum of the initial configuration (dependent only on the module
of k). This expression for W obviously holds only for gaussian initial conditions, and
we will use this assumption (for non gaussian initial conditions, the (4.5) assumes a
more general expression, we will briefly discuss this in section 9). We note that in the
partition function defined in (4.4) is encoded all the dynamical and statistical content
of the continuity, Euler and Poisson equation we started with (equations (2.3), (2.4)
and (3.1) respectively) supplemented with the initial power spectrum. The quantities
of interest we obtain from (4.4) are not then the exact configurations of the field ϕ
at a certain time η but rather its statistical properties (since we’re assuming gaussian
initial conditions).

The linear theory limit, i.e. the eηγabc → 0 limit, corresponds to the tree level of
perturbation theory. In this limit the integrals can be computed and we obtain (see
B.4)

Z0[J,K;P 0] = exp

(
−
∫
dη1 dη2

(1

2
(Ja(k, η1)PL

ab(k, η1, η2)Jb(−k, η2))

+ iJa(k, η1)gab(η1, η2)Kb(−k, η2)
))

, (4.6)
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4 THE PATH INTEGRAL

where gab(η1, η2) is the Green function of the operator δab∂η + Ωab and PL
ab is the power

spectrum evolved at linear level, i.e.

PL
ab(k, η1, η2) = gac(η1, 0)gbd(η2, 0)P 0

cd(k) . (4.7)

Now that we have an explicit expression for Z0, we can compute all the interesting
quantities of linear theory by making appropriate functional derivatives; for example
the power spectrum, defined as6

〈ϕa(k, η1)ϕb(k
′, η2)〉 ≡ δD(k + k′)Pab(k, η1, η2) , (4.8)

is (at this linear level)

δD(k + k′)PL
ab(k, η1, η2) =

(−i)2

Z0

δ2Z0[J,K, P 0]

δJa(k, η1)δJb(k′, η2)

∣∣∣∣
J,K=0

.

In the following we will assume that the initial perturbations δ(k, 0) and θ(k, 0) are
proportional random fields, so that we can write7

ϕa(k, 0) = uaδ0(k) , (4.9)

for a certain two component vector u, where δ0(k) is the initial proportional random
field. Note that with this assumption we can write

δD(k + k′)Pab(k) ≡ 〈ϕa(k, 0)ϕb(k
′, 0)〉 = δD(k + k′)uaubP0(k) ,

with δD(k + k′)P0(k) = 〈δ0(k)δ0(k′)〉.
Instead the propagator is

δD(k + k′)gab(η1, η2) =
i

Z0

δ2Z0[J,K, P 0]

δJa(k, η1)δKb(k′, η2)

∣∣∣∣
J,K=0

.

Now the complete partition function with also the interaction term can be written
as8

Z[J,K;P 0] = exp

(
−i
∫
dη eηγabc

(
−iδ
δKa

−iδ
δJb

−iδ
δJc

))
Z0[J,K;P 0] , (4.10)

6The seemingly strange minus sign in (4.1) on the dependencies of the χ field on the momenta
is mainly due to the fact that we want to write these relations involving the power spectrum in this
standard form, i.e. with δ(k + k′).

7At linear level this is certainly true, see appendix B.2.
8We are using the following property (we introduce 〈· · ·〉 meaning integration over momenta only

here for clarity)
−iδ
δKa

−iδ
δJb

−iδ
δJc

ei〈Kiχi+Jlϕl〉 = χaϕbϕce
i〈Kiχi+Jlϕl〉 ,

so that exp
(〈
V ( −iδδKa

−iδ
δJb
−iδ
δJc

)
〉)

exp(i 〈Kiχi + Jlϕl〉) = exp(〈V (Ka, Jb, Jc)〉) exp(〈Kiχi + Jlϕl〉); this
can be straightforwardly applied to (4.10).
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5 FEYNMAN RULES

and to this can be associated the following Feynman rules (by looking also at (4.6) for
the propagator and the power spectrum rule):

Propagator: b, 2a, 1 = −igab(η1, η2) ; (4.11)

Power spectrum: b, 2a, 1 = PL
ab(η1, η2, k) ; (4.12)

Interaction vertex: a

b

c

= −ieηγabc(ka, kb, kc) , (4.13)

where as usual we indicated field indices with a, b and time indices with 1, 2.
These Feynman rules can be used to compute the statistical configuration of the

field ϕ(η) as we will see in the next section.

5 Feynman rules
Here we will briefly see how to cast perturbation theory in terms of Feynman di-

agrams without too many details since our main focus is the use of renormalization
group techniques. Nevertheless we think that it is useful to put a small review about
this topic here for a better understanding of the following.

Equations (3.2) and (3.3) can be solved writing the following perturbative expan-
sions:

δ(k, τ) =
∞∑
n=1

δn(k)an(τ) ,

θ(k, τ) = −H(τ)
∞∑
n=1

θn(k)an(τ) .

Plugging these in (3.2) and (3.3), one obtains δn(k) and θn(k) in terms of the linear
fluctuations

δn(k) =

∫ ( n∏
i=1

d3qi δ0(qi)

)
δD

(
k−

n∑
i=1

qi

)
Fn(q1, . . . ,qn) ,

θn(k) =

∫ ( n∏
i=1

d3qi δ0(qi)

)
δD

(
k−

n∑
i=1

qi

)
Gn(q1, . . . ,qn) ,

where δ0 is the initial random field and Fn and Gn have rather involved expressions.
It is here that our Feynman rules greatly help in finding the expressions for these
perturbative terms. Rewrite the previous in the formalism we have built

ϕa(k, η) =
∞∑
n=1

ϕ(n)
a (k, η) , (5.1)

9



5 FEYNMAN RULES

where

ϕ(n)
a (k, η) =

∫ ( n∏
i=1

d3qi δ0(qi)

)
δD

(
k−

n∑
i=1

qi

)
F (n)
a (q1, . . . ,qn) ,

with F (n)
a as the analogous of Fn and Gn in our field formalism. Instead of computing

the ϕ(n)
a in terms of their analytical expression (though certainly possible, see [1], but

rather cumbersome), here we see how we can associate a set of diagrams to each ϕ(n)
a .

In the end we will obtain the same terms one would have obtained by doing all the
computation with the explicit expressions for F (n)

a .
At first, let’s start with a situation in which the initial conditions are fixed, so that

we can in principle compute the exact configuration ϕ at a certain time η. To obtain
the set of diagrams corresponding to the n-th order term in equation (5.1), one has to
draw all topologically different tree diagrams (i.e. without loops) with n − 1 vertices
and n initial conditions (depicted as dashed lines in our diagrammatic representation)9.
These diagrams are built as follows: start from the final time variable, then go from
the left to the right, and when you encounter a vertex, bifurcate this line and continue
this process for every line (or propagators) until one of their ends reaches an initial
condition. Figure 5.1 certainly explains this better than words. The rightmost part of
the diagrams correspond to the initial fields (time η = 0), each with momentum ki;
every vertex correspond to an interaction happening at a time 0 ≤ ηi ≤ ηf (where ηf
is the final time), coupling the incoming kj and kl to an outgoing kk; every propagator
represents the linear evolution of a given mode ki from a time ηj to a time ηk. So
to construct the corresponding integral coming out of these diagrams, associate to all
these terms the corresponding Feynman rule (4.11)-(4.13), to all free dashed lines a
corresponding ϕa(k, 0) field and finally integrate over all intermediate time variables
and momenta. As an example, write

ϕ(2)
a (k, ηf ) =

∫
d3k1 d3k2

∫ ηf

0

dηs gab(ηf , ηs)e
ηsγbcd(k,k1,k2)

× gce(ηs, 0)ϕe(k1, 0)gdf (ηs, 0)ϕf (k2, 0) , (5.2)

ϕ(3)
a (k, ηf ) =2

∫
d3k1 d3k2

∫ ηf

0

dηs gab(ηf , ηs)e
ηsγbcd(k,k1,k2)

× gce(ηs, 0)ϕe(k1, 0)ϕ
(2)
d (k2, ηs) ,

where on ϕ(3)
a the factor 2 comes from the fact that its two diagrams are topologically

equivalent (and they give the same contribution) and we recognized the presence of the
lower order diagram corresponding to ϕ(2)

d .
Now we want to implement also the gaussian randomly distributed initial conditions

(and not fixed ones); in this case we’re not interested in the exact configuration ϕ(k, ηf )
(which obviously is meaningless if initial conditions are not fixed), but rather in its
statistical properties via

〈ϕa(k′, η)ϕb(k, η)〉 = δD(k + k′)Pab(k, η) . (5.3)
9Dashed lines correspond to the χ field that, as we have already remarked and as one can see in

equation (6.1), contains informations about the initial conditions.

10



5 FEYNMAN RULES

a
ηf

b

0

k a
ηf ηs

b, 0

c, 0
k

k1

k2

a
ηf ηs

b, 0

η′s

c, 0

d, 0

k

k1

k2

k3

k4

a
ηf ηs

b, 0

η′s

c, 0

d, 0

k

k1

k2

k3

k4

ϕ(1)
a (k, η) ϕ(2)

a (k, η) ϕ(3)
a (k, η)

Figure 5.1: Diagrammatic representation of the first terms in (5.1). At each diagram can
be associated an integral by means of our Feynman rules (4.11)-(4.13) as follows: attach to
every free dashed line a corresponding ϕa(k, 0) field, use Feynman rules and integrate over all
intermediate momenta and time steps. The last two diagrams belong to ϕ(3)(k, η).

Use a perturbative expansion for the new quantity of interest, i.e. the power spectrum

Pab(k, η) =
∞∑
l=0

P
(l)
ab (k, η) ,

and putting (5.1) in (5.3), one finds that, insisting in considering the l index in P (l)
ab as

the number of loops in a diagram,

δD(k + k′)P
(l)
ab (k, η) =

2l+1∑
m=1

〈
ϕ(2l+2−m)
a (k′, η)ϕ

(m)
b (k, η)

〉
. (5.4)

In order to understand the previous, recall that in one diagram, calling V the number
of vertices, l the number of loops and E and I respectively the number of external and
internal lines, one has l = I − (V − 1) (a simple argument for this is the following: the
number of loops is the number of independent internal momenta, I is the total number
of internal momenta, each satisfying V conditions due to conservation of momentum at
each vertex, minus one due to the overall conservation of momentum); then since each
vertex comes with 3 lines crossing at the vertex, we have 3V lines to start with, out of
which E are chosen to be external. The remaining (3N−V ) ones form I = (3V −E)/2
internal lines. The factor of one-half is due to the fact that each internal line is shared
between two vertices. So considering that in our diagrams we will deal with only E = 2
(corresponding to the final configuration at ηf of the two fields) one has V = 2l. Doing
the sum in the exponent in the RHS of (5.4), and considering that the number of
vertices corresponding to a ϕ(n)

a term is n− 1, one has (change the index l in (5.4) to k
to avoid confusions) 2k + 2−m+m− 2 = 2k = l, yielding the right number of loops.

To see how to build the Feynman rules for computing Pab(k, η), consider the simple

11



5 FEYNMAN RULES

a
ηf ηs

b

η′s
ηf

k k′

q

k − q −k + q

−q

a
ηf ηf

b
k k′

Figure 5.2: Diagrammatic representation of the power spectrum terms of P (l)
ab . The first is

one of the three 1 loop diagrams contributing to P (1)
ab , the other is one of the 29 loop diagrams

contributing to P
(2)
ab (where we have suppressed the intermediate times and momenta for

clarity).

case of P (0)
ab ; keeping in mind that the average acts only on the terms ϕa(k, 0),

δD(k + k′)P
(0)
ab (k, η) =

〈
ϕ(1)
a (k′, η)ϕ

(1)
b (k, η)

〉
= gac(η, 0)gbd(η, 0) 〈ϕa(k, 0)ϕb(k

′, 0)〉︸ ︷︷ ︸
=δD(k−k′)Pab(k)

= δD(k− k′)PL
ab(k, η, 0) ,

where in the second step we used the Feynman rules for fixed initial conditions and on
the last one we recognized the linear power spectrum defined in (4.7). One can see that
also for the power spectrum we can give related Feynman rules: to draw each diagram
that contributes to P (l)

ab , just put the tree diagrams for ϕ(m)
a against one for ϕ(2l+2−m)

b

with their initial fields (i.e. dashed lines) facing each other; pair the initial fields in all
possible pairs, glue the pairs, then convert all glued initial fields in the corresponding
linearized power spectrum; for example, for P (1)

ab ,

c, 0a, 1 and b, 1d, 0 → b, 1a, 1 ,

where the index 1 stands for final time and 0 for the initial one. We see that indeed
we recover the same result obtained with the calculations if we use the Feynman rule
for the power spectrum. Other examples are showed in figure 5.2, of which we write
the expression for the first diagram we denote by P ′(1)

ab

P
′(1)
ab (k, ηf ) =2

∫ ηf

0

dηs

∫ ηf

0

dη′s gac(ηf , ηs)e
ηsγcde(k,q,k− q)PL

df (q, ηs, η
′
s)

× PL
eg(|k− q|, ηs, η′s)eη

′
sγfgh(k,q,k− q)ghb(ηf , η

′
s) ,

where the factor 2 is there since you can construct an identical diagram corresponding
to the interchange of the two fields.

We discovered that we can apply standard perturbation theory tools completely
analogous to the ones pertaining quantum field theories, and we can (and should) go
beyond this point by developing the necessary tools to apply also renormalization group
techniques to cosmological problems.

12
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6 The Renormalization Group approach
Note that we can rewrite equation (4.10) in the following way (details in appendix

B.4)

Z[J,K;P 0] =

∫
DϕDχ exp

(∫
dη1 dη2

(
− 1

2
χa(η1)P 0

ab(η1, η2)δD(η1)δD(η2)χb(η2)

+ iχa(η1)g−1
ab (η1, η2)ϕb(η2)

)
+ i

∫
dη (−eηγabcχaϕbϕc + Jaϕa +Kaχa)

)
(6.1)

(we have put also the time dependence of the various quantities only where the proper
dependencies could have been ambiguous and as always integration over all momenta
is implied), where one can see how the power spectrum is coupled only to the field χ,
showing the role of this field in encoding the informations on the statistic of the initial
conditions. We will use this alternative form of the path integral in the following.
The starting point for our formulation of the renormalization group approach is the
introduction of a low pass filter Θ(λ, k) to the power spectrum,

P 0(k)→ P 0
λ (k) ≡ P 0(k)Θ(λ, k) ; (6.2)

in this way we introduce a fictitious universe described by Zλ[J,K, P 0] ≡ Z[J,K, P 0
λ ]

where all the fluctuations with momenta greater than λ are damped. Increasing the
cut-off from λ = 0 to λ = ∞, linear and non linear effects of higher and higher
fluctuations are gradually taken into account.

These RG methods are particularly suited in physical situations in which the scale
you have to probe in measurements is well separated by the scale where one should con-
trol the “fundamental theory”. Starting from the fundamental scale (here corresponding
to low values of k), the RG flow describes the gradual inclusion of fluctuations at scales
closer and closer to the ones relevant for measurements (here represented by region of
high k).

In the following for simplicity we will just take the Heaviside function as the filter,
Θ(λ, k) = θ(λ − k). Now we can take the derivative with respect to λ (that is a
scale parameter, analogous to those one introduces in renormalization in QFT) of
the quantities of interest to obtain their RG equations (i.e. equations expressing the
variations with respect to the scale parameter), for example for Zλ we obtain

∂λZλ =

∫
DϕDχ

see (6.1)︷ ︸︸ ︷
exp(· · ·)

(
−1

2

)∫
dη1 dη2 χa(η1)P 0

ab(η1, η2)δD(λ− q)δD(η1)δD(η2)χb(η2)

=
1

2

∫
dη1 dη2 P

0
ab(η1, η2)δD(λ− q)δD(η1)δD(η2)

δ2Zλ
δKaδKb

,

where on the first step we used the fact that the derivative of Heaviside is the Dirac
delta and on the last one we wrote all the part dependent on the fields in

δ2Zλ[J,K]

δKa(k, η1)δKb(k, η2)
= −

∫
DϕDχχa(k, η1)χb(k, η2) exp(· · ·) .

13



6 THE RENORMALIZATION GROUP APPROACH

Our main aim is to derive expressions for the full propagator and power spectrum
(i.e. corresponding to the full interacting theory) by using renormalization group equa-
tions, and for this we need to introduce other quantities (which are familiar in QFT):
one is

W [J,K] = −i log(Z[J,K]) , (6.3)

known as the generating functional of connected diagrams, from which one can define
the expectation values of the fields in the presence of a source as

〈ϕa(k, η)〉 ≡ ϕ(cl)
a [J,K] =

δW [J,K]

δJa(k, η)
, 〈χb(k, η)〉 ≡ χ

(cl)
b [J,K] =

δW [J,K]

δKb(k, η)
(6.4)

(the name classical is due to the fact that they solve a classical equation of motion like
(B.5)); another quantity is the Legendre transform of W

Γ[ϕ(cl),χ(cl)] = W [J,K]−
∫

dη d3k (Jaϕ
(cl)
a +Kbχ

(cl)
b ) , (6.5)

known as the effective action (or also as the generator of 1PI diagrams)10. Note that

δnΓ[ϕ(cl),χ(cl)]

δϕ
(cl)
a1 · · · δϕ

(cl)
an

∣∣∣∣∣
ϕ(cl),χ(cl)=0

= 0 ∀n ≥ 0 ; (6.6)

this represents 1PI diagrams with n ϕ field external legs11. To see that this is indeed
zero, using the notation of section 5, we see that, with E = n,

3V = n+ 2I , l = I − (V − 1) =⇒ V = n+ 2(l − 1) ;

all vertices must have at most one external leg attached (otherwise the connection
with another vertex must be with a single internal propagator or power spectrum, thus
yielding a non 1PI diagram), so n of these V vertices have only an external leg and the
other 2(l − 1) have none; now since we cannot have χ field external legs, every χ field
must be contracted with a ϕ field belonging to another vertex. One then see that a
contribution to (6.6) must contain at least one loop, and at least one of them must be
a ϕ loop, that vanishes (in the propagator there is an Heaviside function like θ(η1−η2),
see (B.9), and in a loop at least one of the Heaviside vanishes since I have to return
back to the initial time).

The quantities we’re interested in are encoded in the second functional derivatives
of W ; at linear level, since using (4.6) we can write

W0[J,K] =

∫
dη1 dη2

(
i

2
JaP

L
abJb − JagabKb

)
, (6.7)

101PI = one particle irreducible, which are diagrams that “cannot be split by cutting only one line”
and without external propagators.

11Actually the functional derivatives of the effective action (called also proper vertices functions)
don’t contain the expression for the external legs; what we mean here is that we’re considering con-
nected diagrams with n external legs which are also 1PI once its external legs are removed.
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we have

δ2W0[J,K]

δJa(k, η1)δJb(k′, η2)

∣∣∣∣
J,K=0

= iδD(k + k′)PL
ab(k, η1, η2) ,

δ2W0[J,K]

δJa(k, η1)δKb(k′, η2)

∣∣∣∣
J,K=0

= −δD(k + k′)gab(η1, η2) ,

so we can define the full propagator Gab and the full power spectrum Pab as

δ2W [J,K]

δJa(k, η1)δJb(k′, η2)

∣∣∣∣
J,K=0

≡ iδD(k + k′)Pab(k, η1, η2) ,

δ2W [J,K]

δJa(k, η1)δKb(k′, η2)

∣∣∣∣
J,K=0

≡ −δD(k + k′)Gab(η1, η2) .

(6.8)

We can do an analogous procedure for the second derivatives of the effective action:
writing the linear part plus the correction due to interaction12, we have

Γ(2)
ϕaχb
≡ g−1

ab − Σϕaχb
,

Γ(2)
χaχb
≡ iP 0

abδD(η1)δD(η2) + iΦab ,
(6.9)

where we have defined for example

δD(k + k′)Γ(2)
ϕaχb

(k,k′, η1, η2) ≡ δ2Γ[ϕ(cl),χ(cl)]

δϕ
(cl)
a (k, η1)δχ

(cl)
b (k′, η2)

∣∣∣∣∣
ϕ(cl),χ(cl)=0

. (6.10)

One can show13 that we can relate (6.8) and (6.9) and write

Pab = P I
ab + P II

ab , (6.11)

where

P I
ab(k, η1, η2) =Gac(k, η1, 0)Gbd(k, η2, 0)P 0

cd(k) , (6.12)

P II
ab(k, η1, η2) =

∫ η1

0

dη′
∫ η2

0

dη′′Gac(k, η1, η
′)Gbd(k, η2, η

′′)Φcd(k, η
′, η′′) , (6.13)

and
Gab(k, η1, η2) = (gab − Σϕaχb

)−1(k, η1, η2) . (6.14)

We are then ready to write the RG equation for Wλ (in the following a quantity
labelled with λ is a quantity where the substitution (6.2) has been made)

∂λWλ =
1

2

∫
dη3 dη4 P

0
ab(η3, η4)δD(λ− q)δD(η3)δD(η4)

(
iχ(cl)

a χ
(cl)
b +

δ2Wλ

δKaδKb

)
, (6.15)

12The quantities defined here can be seen as an analogous of the self-energies one encounter in
renormalization in QFT.

13Details regarding derivations of this and the following equations are in appendix B.5.
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and thus for the propagator

−δD(k + k′)∂λGab,λ = ∂λ
δ2Wλ

δJa(k, η2)δKb(k′, η2)

∣∣∣∣
J,K=0

=
1

2

∫
dη3 dη4 P

0
ab(η3, η4)δD(λ− q)δD(η3)δD(η4)

δ4Wλ

δJaδKbδKcδKd

∣∣∣∣
J,K=0

.

(6.16)

Defining

δD(ka + kb + kc + kd)W
(4)
JaKbKcKd

≡ δ4Wλ

δJaδKbδKcδKd

∣∣∣∣
J,K=0

, (6.17)

we can write it using multiple times the (B.12)

W
(4)
JaKbKcKd,λ

(k, η1,−k, η2,k
′, η3,−k′, η4)

=

∫
ds1 . . . ds4Gae,λ(k, η1, s1)Gfb,λ(k, η2, s2)Ggc,λ(k

′, η3, s3)Ghd,λ(k
′, η4, s4)

×

(
− 2

∫
ds5 ds6Gli,λ(k − k′, s6, s6)Γ

(3)
χeϕhϕl,λ

(k, s1,−k′, s4,−k + k′, s5)

× Γ
(3)
χiϕgϕf ,λ

(k− k′, s6,k
′, s3,−k, s2) + Γ

(4)
χeϕfϕgϕh,λ

(k, s1,−k, s2,k
′, s3,−k′, s4)

)
.

(6.18)

Inserting the previous into (6.16) we obtain the RG equation for the propagator; since
it is too long we won’t write it explicitly, but still we can represent it diagrammatically
as in figure 6.1, where this time we use

b, 2a, 1 = −iGab(k, η1, η2) ; (Full propagator)

= iΓ
(3)
χϕϕ,λ ; (3-point vertex function)

= iΓ
(4)
χϕϕϕ,λ ; (4-point vertex function)

a b = Kab,λ . (RG kernel)

The RG kernel is defined as

Kab,λ(k, η, η
′) = Gac(k, η, 0)Gbd(k, η

′, 0)P 0
cd(k)δD(λ− k) . (6.19)

Regarding the RG equation for the power spectrum, we have that P I
ab is completely

determined from the behavior of the propagator (since basically it depends only on it),
whereas for ∂λP II

ab(k, η1, η2), simply apply Leibniz to (6.13) and notice that we need the
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d

dλ ba
=

1

2 ba
+

1

2

a b

Figure 6.1: Diagrammatic representation of the RG equation for the propagator.

RG equation for Φab. To find it, again with the same steps employed for the propagator,
we find

iδD(k + k′)∂λPab,λ = ∂λ
δ2Wλ

δJa(k, η2)δJb(k′, η2)

∣∣∣∣
J,K=0

=
1

2

∫
dη3 dη4 P

0
ab(η3, η4)

× δD(λ− q)δD(η3)δD(η4)

i δ2χ
(cl)
c χ

(cl)
d

δJaδJb

∣∣∣∣∣
J,K=0

+
δ4Wλ

δJaδJbδKcδKd

∣∣∣∣
J,K=0

 ,

(6.20)

where this time the χχ term similar to the one in (6.15) does not vanish after the
evaluation in J,K = 0 as in (6.16), but it yields

δ2χ
(cl)
c χ

(cl)
d

δJaδJb

∣∣∣∣∣
J,K=0

= 2GcaGdb + 2 χc
δGad

δJb

∣∣∣∣
J,K=0︸ ︷︷ ︸

=0

;

it is not difficult then to recognize that this previous term contributes to the P I
ab RG

equation by looking at (6.11), and also notice from (6.11) that the RG equation for
Φ only (again using the same procedure we have done with the propagator) can be
represented with the diagrammatic representation of figure 6.2 (notice the removed
external propagators due to the expression of P II

ab), with the new Feynman rules

b, 2a, 1 = Pab(k, η1, η2) , (Full power spectrum)

= iΓ
(3)
χχϕ,λ ; (3-point vertex function)

= iΓ
(4)
χχϕϕ,λ ; (4-point vertex function)

ba
= Φab ,

where also other two new types of vertex function appear (note that these vanish at
tree level).

7 Solving Renormalization Group equations
We have all the RG equations we need, now in this section we will briefly sketch

some methods to try to solve them.
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d

dλ ba
=

ba
+

1

2 ba
+

1

2
ba

Figure 6.2: Diagrammatic representation of the RG equation for Φab,λ.

We have seen that the expression for the full propagator and the full power spec-
trum depends on the three and four-point vertex functions, which are themselves λ-
dependent quantities. As a consequence of that, one can take their RG equations and
find that they involve higher vertex functions. Similar to the Vlasov equation, one has
then an infinite tower of coupled differential equations, so one can truncate them at a
certain order as an approximation.

Here we will approximate the full RG flow by keeping a running power spectrum
and propagator but we will keep the tree level vertex expression. This will imply that
all diagrams involving other than the tree level vertex won’t be considered, and we will
approximate the full Γ(3) expression with the tree level one (obtained doing the proper
functional derivatives on the vertex term of the action)

Γ
(3)
χaϕbϕc,λ

(k, s1,−q, s2,−k+ q, s3) ≈ −2

(
3∏
i=1

δD(s− si)

)
esγabc(k,−q,−k+ q) . (7.1)

For the propagator, in this approximation the diagram that contributes on the RHS of
figure 6.1 is the first (since the second contains a four-point vertex function). We can
now compute the one-loop correction to the propagator as follows: just use the tree
level (order l = 0) quantities to express W (4) given in (6.18) (that is use (7.1) as the
vertex term and gab as the propagator):

W
(4),l=0
JaKbKcKd,λ

= −8

∫
ds1 ds2 e

s1+s2gae(s1, η1)gfb(s2, η2)ggc(η3, s1)ghd(s1, s2)

× γehlγigfgli(s2, η4) , (7.2)

then putting this in the RG equation (6.16), one can straightforwardly integrate with
respect to λ (since the only dependence on λ of the RHS is in a delta term) and find,
with the obvious initial condition

Gab,λ=0(k, η1, η2) = gab(η1, η2) , (7.3)

the following result for the propagator with the correction at one loop

Gab,λ=∞ =Gab(k, η1, η2) = gab(η1, η2) + 4P (0)(k)γehl(k,k,−2k)γigf (2k,−k,k)

×
∫

ds1 ds2 e
s1+s2ghd(s1, 0)ggc(s2, 0)gae(s1, η1)gli(s1, s2)gfb(s2, η2) .

This could have also been obtained by means of Feynman diagrams, but the power
of RG flow is to probe, in certain approximations, the non linear regime in a non
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perturbative way; to show this, we will see now how it allows us to do a resummation
of an infinite amount of diagrams by doing only a loop integration.

Consider the k � λ limit. We can write in this limit the kernel (6.19) with its
linear expression as (looking also at (B.9))

Kgh,λ(q, s3, s4) ' uguhθ(s3)θ(s4)P (0)(q)δD(λ− q) ,

where we approximate the vertex (3.5) with

ufγefg(−k,q,k− q) ' δeg
k

2q
cos

k · q
kq

.

Plugging the (7.2) within these approximations in the RG equation for the propagator,
we obtain (after trivial integrations over time steps)

∂λGab,λ(k, η1, η2) = −gab(η1, η2)
k2

3

(eη1 − e
η
2)2

2

∫
d3q δD(λ− q)P

0

q2
,

and integrating it and taking the λ→∞ limit, with the initial condition (7.3), we end
up with

Gab,λ(k, η1, η2) = gab(η1, η2) exp

(
−k2σ2

v

(eη1 − e
η
2)2

2

)
, (7.4)

where we defined the velocity dispersion

σ2
v ≡

1

3

∫
d3q

P 0

q2
.

This last result (the only one regarding the RG approach we see in detail here) tells us
that an intrinsic UV cut off appears: fluctuations with large momenta are exponentially
damped, so that the RG evolution freezes out for λ � e−η/σv. This result cannot be
obtained in perturbation theory (that predicts a divergent behavior in the UV region),
but can be obtain by means of resummation of an infinite amount of diagrams as
showed in [1]; here instead we obtained it with basically only one loop integration.
This, as anticipated, shows the power of this approach.

For the power spectrum, one can follow an analogous procedure. Again allowing for
a running propagator and power spectrum but keeping only the vertices at tree level,
one has that the equation represented in 6.2 reduces to

∂λΦab,λ(k, η1, η2) =4eη1+η2

∫
d3q δD(λ− q)P I

dc;λ(q, η1, η2)Pfe;λ(|q− k|, η1, η2)

× γadf (k,−q,−k + q)γbce(−k,q,k− q)

that corresponds to considering only the first diagram on the RHS (due to the other
vertices that vanish at tree level). Then one can proceed to compute in this and other
approximations the running full power spectrum (see [5]).
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8 Main Results
Thanks to the RG approach, one can try to solve the continuity and Euler equations

non-perturbatively. In particular, differently from the perturbative approach, one can
see that the intrinsic cut-off (7.4) for large wavelenghts appear, whereas in perturbation
theory the n-th order correction diverges as k2n.

The comparison between the N -body simulations and the results obtained with
these RG techniques is quite remarkable [5], and we remember that we took the ap-
proximation of considering only the tree-level vertex.

In conclusion, with this RG approaches one can probe analytically also the non-
linear range of the power spectrum in the BAO region, which is of great interest since
with that one can constraint various models of dark energy. In particular, results with
this approach outclass the ones given by linear and one-loop perturbation theory, which
for regions down to z = 0 redshift badly fail.

An improvement to what we showed here can come from the extension to other
cosmologies and from the analysis of the possible effects of initial non-Gaussianity on
non-linear scales.

9 Possible extensions
Here we will briefly see how to extend our previous discussion to include other

cosmologies than the Einstein-De Sitter ones and how to include non gaussian initial
conditions.

Including other cosmologies. In cosmologies other than the De-Sitter ones, we
can write the Poisson equation as

∇2φ = 4πGa2ρbδ =
3

2
ΩmH2δ , (9.1)

where Ωm is the usual cosmological density parameter

Ωm ≡
ρb
ρc

, ρc ≡
3H2

8πG
,

that is one for an Einstein-De Sitter universe. Then equation (3.3) becomes

∂θ

∂τ
+Hθ +

3

2
ΩmH2δ +

∫
d3q d3p δD(k− q− p)β(q,p)θ(q)θ(p) = 0 .

One can obtain again the (3.6) by redefining η as

η = ln
D+

D+
i

, (9.2)

where D+ is the linear growing decay mode (notice that, since for Einstein-De Sitter,
D+ ∝ a (see appendix B.2), we recover the usual definition of η); also redefine14(

ϕ1(k, η)
ϕ2(k, η)

)
≡ e−η

(
δ(k, η)

−θ(k, η)/Hf

)
, (9.3)

14Look at appendix B.2 for implications of this extended approach to linear theory.
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where f ≡ d lnD+/d ln a. With this new redefinitions, equation (3.6) remains the same
if we change

Ω =

(
1 −1

−3Ωm/2f
2 3Ωm/2f

2

)
.

Now since the ratio Ωm/f
2 is close to unity over the entire lifetime of the universe for

ΛCDM cosmologies, all the work we have done here can be applied also to them15.

Extension to non-gaussian case. Taking into account non-gaussian initial con-
ditions means that the power spectrum is not anymore all we need to know, since
quantities like the bispectrum, trispectrum etc. are non vanishing. In particular the
W function we introduced in (4.4) assumes a general form of the type

W [ϕ(0), {C}] = exp
(
− ϕa(k, 0)Ca(k)− ϕa(k1, 0)Cab(k1,k2)ϕb(k2, 0)

+ ϕa(k1, 0)ϕb(k2, 0)ϕc(k3, 0)Cabc(k1,k2,k3) + . . .
)
,

where the C functions are related to the initial n-points correlation functions. These
extra terms will produce other terms in the partition function Z that will give rise to
new Feynman rules that will affect the running of the propagator and power spectrum
we discussed in section 6. An example of this approach where only the power spectrum
and the bispectrum are retained is given in [4], where there are showed the new Feyn-
man rules involving the new fundamental quantity of interest, that is the bispectrum,
and how this affects the discussion we have made here.

Another approach to treat non-gaussianity (always truncating at the bispectrum)
is given in [7]. The idea is to use iteratively the equation (3.6) as follows:

∂η 〈ϕaϕb〉 = −Ωac 〈ϕcϕb〉+ eηγacd 〈ϕcϕdϕb〉 − Ωbc 〈ϕaϕc〉+ eηγbcd 〈ϕaϕcϕd〉 ,
∂η 〈ϕaϕbϕc〉 = −Ωad 〈ϕdϕbϕc〉+ eηγade 〈ϕdϕeϕbϕc〉 − Ωbd 〈ϕaϕdϕc〉

+ eηγbde 〈ϕaϕdϕeϕc〉 − Ωcd 〈ϕaϕbϕd〉+ eηγcde 〈ϕaϕbϕdϕe〉 ,
∂η 〈ϕaϕbϕcϕd〉 = . . . .

One immediately sees that the equation for the n-point correlation function contains the
n + 1-point one, so we have to truncate the infinite tower of equations by considering
for example a vanishing trispectrum; recall that the definitions of bispectrum and
trispectrum are respectively Babc and Qabcd, with

〈ϕa(k, η)ϕb(q, η)ϕc(p, η)〉 ≡ δD(k + q + p)Babc(k,p,q, η) ,

〈ϕa(k, η)ϕb(p, η)ϕc(q, η)ϕd(r, η)〉 ≡ δD(k + q)δD(p + r)Pab(k, η)Pcd(p, η)

+δD(k + p)δD(q + r)Pac(k, η)Pbd(q, η) + δD(k + r)δD(q + p)Pad(q, η)Pbc(q, η)

+δD(k + p + q + r)Qabcd(k,q,p, r, η) .

15This approximation does not work when we have that Ωm is mode-dependent, since then the
redefinition of η is ill-defined. This could be relevant for cosmologies accounting for massive neutrinos
[2].
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The equations we are interested to solve, imposing Qabcd = 0, are then

∂ηPab(k) = −Ωac(k)Pcd(k)− Ωbc(k)Pac(k) + eη
∫

d3q (γacd(k,−q,q− k)

×Bbcd(k,−q,q− k) + (γbcd(k,−q,q− k)Bacd(k,−q,q− k))

∂ηBabc(k,−q,q− k) = −Ωad(k)Bdcb(k,−q,q− k)− Ωbd(−q)Badc(k,−q,q− k)

−Ωcd(q− k)Badb(k,−q,q− k) + 2eη
(
γade(k,−q,q− k)Pdb(q)Pec(k− q)

+γbde(−q,q− k,k)Pdc(k− q)Pea(k) + γcde(q− k,k,−q)Pda(k)Pec(q)
)

Note that the above equations are similar to RG equations where the flow parameter
is time η instead of the filter λ, so that this approach can be legitimately called time
renormalization group approach. Then one can continue by studying the corrections
that this approach has on the non linear full propagator and power spectrum and
bispectrum [7].

As a final comment, we must remark that the gaussian initial condition approxima-
tion is a very good one for our universe, but still non-gaussianity can come into play
in the high-mass end of the power spectrum, i.e. on the scale of galaxy clusters, and
also it can alter the clustering of dark matter halos inducing a scale-dependent bias
on large scales (see [3]); so including non-gaussianity in RG approach is something of
interest.
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A Gaussian integrals
We show here how to solve what is basically the only functional integral we can

exactly solve, the gaussian integral. Let’s start with an example in a finite number of
dimensions, define

Z[b] = N
∫ ( n∏

i=1

dxi

)
exp

(
−1

2

∑
ij

kijxixj + i
∑
j

bjxj

)
,

where i
∑

j bjxj is the source term and N is a normalization factor; then we make the
change of variables

y = ik−1b, x = y + z ;

with this the exponent becomes16

−1

2
(x, k, x) + i(b, x) = −1

2
(z, k, z)− 1

2
(b, k−1, b) ,

so

Z[b] = N exp

(
−1

2
(b, k−1, b)

)∫ ( n∏
i=1

dzi

)
exp

(
−1

2
(z, k, z)

)
,

now diagonalize k as
∑
kijzizj =

∑
λiξ

2
i , where λi are the eigenvalues of k. We thus

end up with a standard gaussian integral, the final result is

Z[b] = N (2π)n/2(det k)−
1
2 exp

(
−1

2
(b, k−1, b)

)
;

imposing Z[0] = 1, we have

Z[b] = exp

(
−1

2
(b, k−1, b)

)
.

All this procedure can be extended to the functional case

Z[J ] = N
∫
Dq exp

(
−1

2
(q, k, q) + i(q, J)

)
,

yielding (with the proper normalization)

Z[J ] = exp

(
−1

2
(J, k−1, J)

)
. (A.1)

16We are using here the following notation: (x, k, x) ≡
∑
kijxixj .
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B Some derivation details

B.1 More on derivation of (3.2) and (3.3)
Here we will discuss some details regarding the derivation of (3.2) and (3.3).
For equation (3.2), we should see how to arrange the Fourier transform of ∇· (δv);

writing the Fourier transform with the notation F(f), we have (in the following we
will omit the time dependence of the various quantities):

F(∇ · (δ(k)v(k))) = ik · F(δ(k)v(k)) = ik · (F(δ(k)) ∗ F(v(k))) ;

doing explicitly the convolution and setting k = q + p, we can rewrite the previous as

F(∇ · (δ(k)v(k))) = i

∫
d3q d3p δD(k− q− p) (p + q) · v(q)δ(p) ;

our goal is to express this in terms of θ(k) = ik · v(k) = ikv(k), where the last step
comes from the hypothesis that v is irrotational and thus k ‖ v(k). We need to rewrite
only q · v(p) as

q · v(p) = qv cos θ =
pq cos θ

p2
pv(p) = −ip · q

p2
θ(p) , (B.1)

where on the last step we exploited p ‖ v. Then the equation (3.2) easily follows.
Regarding (3.3), the third term comes from (remember that we must take before

the divergence of Euler equation in order to express all with respect to θ(k))

∇ ·∇φ = ∇2φ = 4πGa2ρbδ =
3

2
H2δ ,

where on the last step we exploited the first Friedmann equation for an Einstein-De
Sitter universe with no cosmological constant, a2H2 = H2 = 8πGa2ρb/3. Instead for
the Fourier transform of the term ∇ · ((v · ∇)v), with analogous procedure as before
we arrive at

F(∇ · ((v · ∇)v)) = −
∫

d3q d3p δD(k− q− p)((p + q) · v(q))(q · v(p)) ,

then with (B.1) we find∫
d3q d3p δD(k− q− p)

p + q

p2
· q θ(q)

p · q
p2

θ(p) ,

and then one easily arrives at (3.3)

B.2 Recovering linearized Cosmological perturbation results in
Newtonian limit

Setting α , β = 0 in (3.2) and (3.3) we arrive at

∂δ(k, τ)

∂τ
+ θ(k, τ) = 0 ,

∂θ(k, τ)

∂τ
+Hθ(k, τ) +

3

2
H2δ(k, τ) = 0 .
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Differentiate again the first with respect to τ and we find (we denote with ˙≡ d/dτ )

δ̈ + θ̇ = δ̈ −Hθ − 3

2
H2δ = δ̈ +Hδ̇ − 3

2
H2δ = 0 . (B.2)

In a matter dominated universe we have a(t) = kt2/3, with k a proportionality constant,
and thus H = 2/3t; so, since the relation between conformal time and cosmic time is

τ(t) =

∫ t

0

dt′

a(t′)
=

3

k
t
1
3 ,

we have
H = aH = kt

2
3

2

3t
=

2

τ
, (B.3)

so (B.2) becomes

δ̈ +
2

τ
δ̇ − 6

τ 2
δ = 0 ;

assuming δ ∝ τα, substituting in the previous and then solving the resulting equation
α2 +α−6 = 0, one finds α = 2 ,−3 and since a(τ) ∝ τ 2, one recovers the known result

δ(k, τ) = δ(k, τi)

(
a(τ)

a(τi)

)m
,

with τi a reference time, m = 1 the growing mode and m = −3/2 the decaying mode.
The equation for θ is then straightforward:

θ(k, τ) = −∂δ(k, τ)

∂τ
= −mHδ(k, τ) .

One then can see that the doublet ϕ from (3.4) becomes(
ϕ1(k, η)
ϕ2(k, η)

)
= e−ηδ(k, τi)

(
a(τ)

a(τi)

)m(
1
m

)
,

where one sees that, exploiting the definition of η, the growing mode corresponds to
ϕ = const, and in general one can select the growing or the decay mode by selecting
initial fields proportional to

u =

(
1
1

)
, v =

(
1
−3/2

)
,

respectively. Note also that the previous implies that indeed the two components of
the initial field are proportional to the same random field, as claimed in (4.9).

In the case of the extension to other cosmologies (section 9), the above equations
simply become

δ(k, τ) = δ(k, τi)
D±(τ)

D±(τi)
, θ(k, τ) = −f(τ)H(τ)δ(k, τi)

D±(τ)

D±(τi)
.

where D± is the linear growth function (growing or decaying mode respectively); so
one sees that with the redefinitions of η and the fields described in section 9, one has
that the linear growing mode corresponds again to ϕ = const.
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B.3 Deriving (3.6)
In order to relate (3.6) with (3.3) and (3.2), we have to mainly focus on the left

hand side of (3.6) (since then understanding how to match the right hand side is
straightforward), so as a first thing we can see that the following holds:

∂

∂η
=
∂τ

∂a

∂a

∂η

∂

∂τ
=

1

2τk
kτ 2 ∂

∂τ
=
τ

2

∂

∂τ
,

where we used a(τ) = kτ 2 with k a proportionality constant. Then using also (B.3),
the left hand side of (3.6) with the index a = 1 becomes

LHS = e−η
(
−δ +

τ

2
δ̇ + δ +

τ

2
θ
)
,

that is indeed what we were looking for if we multiply it by 2eη/τ . The case a = 2 is
completely analogous.

B.4 Deriving some path integral formulas

Here we will see some details about the derivations of (4.3), (4.6), and (6.1). For
the first, let’s rewrite (4.2) as a sum over all the paths from ϕ(0) to ϕ(ηf ):

P [ϕ(ηf ),ϕ(0)] =

∫
D′′ϕ δD[ϕ(ηf )−ϕcl[ηf ,ϕ(0)]] ,

that is the expression for the path integral in classical mechanics (see also [6]).
Now to simplify the notation we express equation (3.6) schematically as Ôϕ−λϕ =

0, with λ representing the interaction term. We can then use the following property of
the delta function: given the function f(ϕ), if f has a zero in ϕcl, then we can formally
write

δD(ϕ− ϕcl) = δD(f(ϕ))|f ′(ϕcl)| ; (B.4)

using f(ϕ) = Ôϕ − λϕ and collecting |f ′(ϕcl)| in an overall constant factor, we have
(using the integral representation of the delta)

δD(ϕ− ϕcl) = N
∫

dχ ei
∫

dηχf(ϕ) ,

with χ as the auxiliary field. It is not difficult to recognize the action (4.1) in the argu-
ment of the exponential, and this allows us to arrive at (without schematic notation)

P [ϕ(ηf ),ϕ(0)] = N
∫
D′′ϕDχ eiS .

Now regarding (4.6), we can reverse the previous reasoning: the piece affected by
the integration over χ becomes∫

Dχeiχa(fa(ϕ)+Ka) = δD(f(ϕ) + K) ,
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so that the part affected by
∫
Dϕ(ηf )D′′ϕ becomes∫

Dϕ(ηf )D′′ϕ δD(f(ϕ) + K) exp

(
i

∫
dη Jaϕa

)
= exp

(
i

∫
dη Jaϕ̃a

)
,

where ϕ̃a, that comes from the Dirac delta integration, is the solution of the classical
equation of motion with source Ka:

(δab∂η + Ωab)ϕ̃b(η) = −Ka(η) , (B.5)

which is straightforwardly given by

ϕ̃a(η1) = ϕ0
a(η1)−

∫
dη2 gab(η1, η2)Kb(η2) ,

with gab(η1, η2) the Green function of the operator δab∂η + Ωab and ϕ0
a(η1) the homoge-

neous solution of (B.5), i.e. the sourceless zeroth order solution, that is correlated to
the initial configuration through17

ϕa(η) = gab(η, 0)ϕb(0) . (B.6)

To see explicitly why the previous holds, use the Laplace transform on equation
(3.6) with respect to the variable η and obtain (dropping the interaction term γabc that
is not important now)18

ωδab + Ωabϕb(k, ω) = ϕa(k, η = 0) ;

now multiply the previous by the inverse of ωδab + Ωab ≡ σ−1
ab , that is(

1 + ω −1
−3/2 3/2 + ω

)−1

=
1

ω(2ω + 5)

(
2ω + 3 2

3 2ω + 2

)
, (B.7)

and obtain, doing the inverse Laplace transform, indeed the (B.6), with (taking c > 0
to take the standard retarded propagator)

gab(η, 0) =

∫ c+i∞

c−i∞

dω1

2πi
σab(ω)eωη .

17We drop the index zero since all our discussion here is at linear level.
18The Laplace transform is defined as L[f(η)](ω) =

∫∞
0
e−ωηf(η) dη, where ω is a complex quantity.

Regarding the properties we need, we see that for a derivative,

L[f ′(η)](ω) = e−ωηf(η)

∣∣∣∣∞
0

+ ω

∫ ∞
0

dη e−ωηf(η) = −f(0) + ωL[f(η)] .

Instead its inverse is given by the Mellin’s inverse formula, that is

L−1[f(η)] = lim
T→∞

∫ c+iT

c−iT

dω

2πi
L[f ](ω1)eωη ,

where c is a real number so that the contour path of integration is in the region of convergence of
L[f ].
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Using residue theorem results, we can compute explicitly the previous; for η < 0, we
have to close the circuit where we integrate on the complex plane on the right (since
that, in order to have a negative exponential we must go to values with Reω > 0 )
and since the only poles of the integrand correspond to ω = 0,−5/2 we have that gab
is zero, thus respecting causality; for η > 0, the circuit must be closed on the left, so
it contains the two poles and thus the complete gab is (calling Aab the matrix (B.7)
without the factors at the denominator)

gab(η, 0) =

(
Res
ω=0

eωη
Aab(ω)

2ω + 5
+ Res

ω=−5/2
eωη

Aab(ω)

ω

)
θ(η) =

(
Bab + Cabe

− 5
2
η
)
θ(η) , (B.8)

with
B =

1

5

(
3 2
3 2

)
, C =

1

5

(
2 −2
−3 3

)
.

The (B.8) can be easily extended to a generic initial time, yielding

gab(η1, η2) =
(
Bab + Cabe

− 5
2

(η1−η2)
)
θ(η1 − η2) . (B.9)

gab is also the Green function of the operator δab∂η + Ωab, i.e. the solution to

(δab∂η1 + Ωab)gbc(η1, η2) = δacδD(η1 − η2) , (B.10)

in fact

(δab∂η1+Ωab)

∫ c+i∞

c−i∞

dω1

2πi
σbd(ω)eω(η1−η2) =

∫ c+i∞

c−i∞

dω1

2πi
eω(η1−η2)

δad︷ ︸︸ ︷
(ωδab + Ωab)(ωδbd + Ωbd)

−1 ,

and then one can easily recognize the integral representation of the Dirac delta by a
change of variable in the complex plane like ω = iω′.

So we arrive at

Z0[J,K;P 0] = exp

(
−i
∫

dη1 dη2 Ja(k, η1)gab(η1, η2)Kb(−k, η2)

)
×
∫
Dϕ(0)W [ϕ(0), P 0] exp

(
i

∫
dη Ja(k, η)gab(η, 0)ϕb(k, 0)

)
,

and the integral in the last line is a simple gaussian integral, that can be solved with
(A.1) using as the source term Ja(k, η)gab(η, 0), yielding indeed (4.6).

For (6.1), we have only to show that Z0 from (4.6) can be written as

Z0[J,K;P 0] =

∫
DϕDχ exp

(
− 1

2
χa(0)P 0

abχb(0) + i

∫
dη1 dη2 χag

−1
ab ϕb

+ i

∫
dη (Jaϕa +Kaχa)

)
,

since then the interaction term can be included in the same way as in (4.10). ϕ enters
only linearly in the exponent, so again use the delta integral representation to write∫

Dϕ exp

(
i

∫
dη

(∫
dη′ χag

−1
ab + Jb

)
ϕb

)
= δD

(∫
dη χag

−1
ab + Jb

)
,
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and from the integration over χ, exploiting (B.4) to write δD(
∫

dη χag
−1
ab + Jb) ∝

δD(χ− χ0) with

(χ0)a(η2) = −
∫

dη1 Ja(η1)gab(η1, η2) , (B.11)

and reabsorbing the proportionality term in an unimportant overall constant, we indeed
obtain (4.6).

B.5 Section 6 relations

Here we will try to explain the details of the derivations of some of the equations
of section 6.

An important relation we will frequently use is the functional derivative chain rule,
that is

δ

δJ(z)
=

∫
dy

δφ(y)

δJ(z)

δ

δφ(y)
; (B.12)

with this we can see that (here we will use the shortcut notation φa to denote generically
a ϕ(cl)

b , χ(cl)
c field, so a goes from 1 to 4, and same for the sources regrouped in Ja)

δΓ[φ]

δφa(η,k)
=

∫
dη′ d3k′

δJa(η
′,k′)

δφa(η,k)

φa(η′,k′)︷ ︸︸ ︷
δW [J]

δJa(η′,k′)
−
∫

dη′ d3k′
δJa(η

′,k′)

δφa(η,k)
φa(η

′,k′)

−
∫

dη′ d3k′ Ja(η
′,k′)δD(η − η′)δD(k− k′) = −Ja(η,k) ,

where the sum over a is not implied and we used (6.4) (note that from that you can
see Ja = Ja[φ]). Now we can take the second derivative of Γ as(

δ2Γ[φ]

δφ(η,k)δφ(η′,k′)

)
ab

= − δJa(η,k)

δφb(η′,k′)
= −

(
δφb(η

′,k′)

δJa(η,k)

)−1

= −
(

δ2W [J]

δJ(η,k)δJ(η′,k′)

)−1

ab

,

(B.13)
so one sees that the 4 × 4 matrices Γ(2) and W (2) (whose definitions can be guessed
from (6.10) and (6.17) respectively) are basically one the inverse of the other. At the
linear level (using (4.6), (6.3) and (6.5) and restoring our usual notation),

Γ0 =

∫
dη dη′ d3k

(
i

2
JaP

L
abJb − JagabKb

)
−
∫

dη d3k
(
Jaϕ

(cl)
a +Kaχ

(cl)
a

)
;

since19

χ(cl)
a (η,k) =

δW

δKa(η,k)
= −

∫
dη′ Jb(η

′,−k)gba(η
′, η) ,

ϕ(cl)
a (η,k) =

δW

δJa(η,k)
=

∫
dη′
(
iJb(−k, η′)PL

ab(k, η, η
′)− gab(η, η′)Kb(−k, η′)

)
,

(B.14)

19Notice that we obtain the same result as in (B.11) for the χ field.
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so∫
dη d3k

(
Jaϕ

(cl)
a +Kaχ

(cl)
a

)
=

∫
dη dη′ d3k

(
iJaP

L
abJb − 2JagabKb

)
=⇒ Γ0 = −W0 ,

and expressing all with respect to fields,

Γ0 =

∫
dη1 dη2 d3k

( i
2
χ(cl)
a P 0

abχ
(cl)
b δD(η1)δD(η2) + χ(cl)

a g−1
ab ϕ

(cl)
b

)
.

With this last equations one can now understand the split between linear and non
linear part made in (6.9).

To derive (6.11)-(6.14), it suffices to compare(
0 gab − Σϕaχb

gab − Σϕaχb
P 0
ab − iΦab

)−1

= −
(
Pab Gab

Gab 0

)
,

where the zero block diagonal matrices are there due to (6.6).
For (6.15), we used ∂λWλ = −i(∂λZ)/Z and rewrote it exploiting

δW

δKa

= − i

Z

δZ

δKa

=⇒ δ2W

δKaδKb

=
1

Z2

δZ

δKa

δZ

δKb︸ ︷︷ ︸
−iχ(cl)

a χ
(cl)
b

+
i

Z

(∫
DϕDχχaχb exp(· · ·)

)
.

Regarding the (6.18) using (B.12), we can see that for example (with a “reduced
notation” just for simplicity)

δ3W

δJ(η1)δK(η2)δK(η3)
= −

∫
ds1

δϕ(cl)(s1)

δK(η2)

δ

δϕ(cl)(s1)

δ2W

δJ(η1)δK(η2)

=

∫
ds1G(s1, η2)

δ

δϕ(cl)(s1)

(
δ2Γ

δϕ(cl)(η1)δχ(cl)(η3)

)−1

=

∫
ds1 ds2 ds3G(s1, η1)G(s2, η2)

×G(s3, η3)
δ3Γ

δϕ(cl)(η1)δϕ(cl)(η2)δχ(cl)(η3)
,

where we used δϕ(cl)
/
δK = δ2W/δJδK (using (B.13)) that is the propagator (see

(6.8)). An analogous reasoning is made for the full W (4) (keeping in mind that at the
end the functional derivative is computed at J,K = 0), yielding indeed (6.18).
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